• Title/Summary/Keyword: 여과실험

Search Result 821, Processing Time 0.019 seconds

Light and Electron Microscopy of Gill and Kidney on Adaptation of Tilapia(Oreochromis niloticus) in the Various Salinities (틸라피아의 해수순치시(海水馴致時) 아가미와 신장(腎臟)의 광학(光學) 및 전자현미경적(電子顯微鏡的) 관찰(觀察))

  • Yoon, Jong-Man;Cho, Kang-Yong;Park, Hong-Yang
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.27-40
    • /
    • 1993
  • This study was taken to examine the light microscopic and ultrastructural changes of gill and kidney of female tilapia{Oreochromis niloticus) adapted in 0%o, 10%o, 20%o, and 30%o salt concentrations, respectively, by light, scanning and transmission electron microscope. The results obtained in these experiments were summarized as follows: Gill chloride cell hyperplasia, gill lamellar epithelial separation, kidney glomerular shrinkage, blood congestion in kidneys and deposition of hyalin droplets in kidney glomeruli, tubules were the histological alterations in Oreochromis niloticus. Incidence and severity of gill chloride cell hyperplasia rapidly increased together with increase of salinity, and the number of chloride cells in gill lamellae rapidly increased in response to high external NaCl concentrations. The ultrastructure by scanning electron microscope(SEM) indicated that the gill secondary lamella of tilapia(Oreochromis niloticus) exposed to seawater, were characterized by rough convoluted surfaces during the adaptation. Transmission electron microscopy(TEM) indicated that mitochondria in chloride cells exposed to seawater, were both large and elongate and contained well-developed cristae. TEM also showed the increased chloride cells exposed to seawater. The presence of two mitochondria-rich cell types is discussed with regard to their possible role in the hypoosmoregulatory changes which occur during seawater-adaptation. Most Oreochromis niloticus adapted in seawater had an occasional glomerulus completely filling Bowman's capsule in kidney, and glomerular shrinkage was occurred higher in kidney tissues of individuals living in 10%o, 20%o, 30%o of seawater than in those living in 0%o of freshwater, and blood congestion was occurred severer in kidney tissues of individuals living 20%o, 30%o of seawater than in those living in 10%o of seawater. There were decreases in the glomerular area and the nuclear area in the main segments of the nephron, and that the nuclear areas of the nephron cells in seawater-adapted tilapia were of smaller size than those from freshwater-adapted fish. Our findings demonstrated that Oreochromis niloticus tolerated moderately saline environment and the increased body weight living in 30%o was relatively higher than that living in 10%o in spite of histopathological changes.

  • PDF