• Title/Summary/Keyword: 여객 대피 유동

Search Result 2, Processing Time 0.018 seconds

A Numerical Study on Passengers' Evacuation in a subway station in case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.142-147
    • /
    • 2009
  • In the present study, a numerical simulation of passenger evacuation in a subway station was performed. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) has been improved to simulate passenger flow in detailed geometry. The effect of grid density was assessed in the present study to show the advantage of using finer grid in the simulation. The method of coupling passenger flow and fire simulation has also been investigated to analyze passenger evacuation flow under fire. In this method the CO distributions in the subway station was used to assess fire hazards of passenger by means of FED(Fractional Effective Dose) model. Using the coupled algorithm a simulation for passenger evacuation flow and fire analysis were performed simultaneously in the simplified subway station. This algorithm could be used in the design of subway station for the purpose of passengers' safety in case of fire.

  • PDF

A Numerical Study on Passenger Evacuation in a Subway Station in Case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.509-514
    • /
    • 2010
  • A numerical simulation of passenger evacuation in a subway station was performed by coupling the passenger flow analysis and the fire simulation. The algorithm of the passenger flow analysis was based on a DEM (Discrete Element Method) using the potential map of the direction vector for each passenger. This algorithm was improved in the present study as to use finer grid smaller than a passenger in order to resolve detailed geometry of the station and to resolve the behavior of passengers in the bottleneck at the ticket gate considering the collision of passengers to a wall or with other passengers. In the fire simulation, the CO distribution predicted by using CFD was used to take into account the effect of toxic gases on the passengers' mobility. The methodology proposed in the present study could be used in designing safer subway station in case of fire occurrence.