• Title/Summary/Keyword: 엔티티 매칭

Search Result 2, Processing Time 0.014 seconds

Entity Matching Method Using Semantic Similarity and Graph Convolutional Network Techniques (의미적 유사성과 그래프 컨볼루션 네트워크 기법을 활용한 엔티티 매칭 방법)

  • Duan, Hongzhou;Lee, Yongju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.801-808
    • /
    • 2022
  • Research on how to embed knowledge in large-scale Linked Data and apply neural network models for entity matching is relatively scarce. The most fundamental problem with this is that different labels lead to lexical heterogeneity. In this paper, we propose an extended GCN (Graph Convolutional Network) model that combines re-align structure to solve this lexical heterogeneity problem. The proposed model improved the performance by 53% and 40%, respectively, compared to the existing embedded-based MTransE and BootEA models, and improved the performance by 5.1% compared to the GCN-based RDGCN model.

Development and Evaluation of Information Extraction Module for Postal Address Information (우편주소정보 추출모듈 개발 및 평가)

  • Shin, Hyunkyung;Kim, Hyunseok
    • Journal of Creative Information Culture
    • /
    • v.5 no.2
    • /
    • pp.145-156
    • /
    • 2019
  • In this study, we have developed and evaluated an information extracting module based on the named entity recognition technique. For the given purpose in this paper, the module was designed to apply to the problem dealing with extraction of postal address information from arbitrary documents without any prior knowledge on the document layout. From the perspective of information technique practice, our approach can be said as a probabilistic n-gram (bi- or tri-gram) method which is a generalized technique compared with a uni-gram based keyword matching. It is the main difference between our approach and the conventional methods adopted in natural language processing that applying sentence detection, tokenization, and POS tagging recursively rather than applying the models sequentially. The test results with approximately two thousands documents are presented at this paper.