• Title/Summary/Keyword: 엔진실린더

Search Result 248, Processing Time 0.024 seconds

A Study on Design of High strength Cylinder Block about Common Rail Direct Injection Diesel Engine for Small Tractor (소형 트랙터용 전자제어 직접 분사식 디젤 엔진 고강도 실린더 블록의 설계에 관한 연구)

  • Seock-Ju Nam;Sung-Ho Park;Gue-Tae Kim;Gwi-Nam Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.649-656
    • /
    • 2023
  • Recently, global warming has become severe, and regulation is established for carbon savings each field. its regulation is applied to various fields using IC engine such as automobile, ship, agricultural machine. Therefore engine block applied Common Rail Direct Injection(CRDI) technology, that carry out thermal-structure analysis to examine design. The thermal load about 900℃ by explosion was applied in cylinder. And pressure about 9 MPa(90 Bar) was applied to structure analysis. As a result, it was the highest at 185.99℃ at the top of cylinder. Static-structure analysis applied thermal load, that was shown maximum equivalent stress at 142.59 Mpa and Maximum principal stress 145.03 MPa, Minimum principal stress -149 MPa. When compare analysis results to material property, it design is safety structurally.

MSRP Prediction System Utilizing KERAS and DNN (Keras와 DNN을 이용한 자동차 MSRP 예측 시스템)

  • Kang, Jiwon;Yun, Hyonbin;Lee, Sanghyun;Choi, Hyunho;Moon, Yoo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.355-356
    • /
    • 2021
  • 본 논문에서는 Python 3의 Keras 모듈을 이용하여 특정 자동차에 대한 최적의 판매자권장소비자가격(MSRP)을 예측하는 시스템을 제안한다. 이 시스템은 2004년에 미국에서 시판된 428종류의 자동차에 대한 정보를 제조사, 차종, 생산지, 엔진 크기, 실린더 수, 시내 주행 시 연비, 고속도로 주행 시 연비, 마력, 차체 무게, 차체 길이의 독립변수를 사용하여 자체적으로 딥러닝한 회귀모델을 통해 특정 지표가 주어진 차량에 대해 종속변수인 판매자권장소비자가격을 예측한다. Optimizer를 adam으로, 학습률을 0.005으로 설정한 경우의 검증 MAE 값이 3842.98로 가장 낮게 산출되었고, 해당 모델의 결과는 예측값과 실제값의 오차율이 ±15% 정도 내외로 예측된 표본의 비율이 약 80.14%로 측정되었다. 위 모델은 향후 신차 가격 결정 및 중고차 시장에서 구매, 판매 결정을 돕는 등 특정 시장 내에서 다양한 자동차의 가치를 판단하기에 유용할 것으로 전망된다.

  • PDF

Effects of Multi-stage Pilot Split Injection Strategy on Combustion and Emission Characteristics in a Single-Cylinder Diesel Engine (단기통 디젤엔진에서 다단 파일럿 분할 분사 전략이 연소 및 배기가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.692-698
    • /
    • 2020
  • This paper examines the effects of a multi-stage pilot split injection strategy on combustion and exhaust emission factors in a single-cylinder diesel engine. One analysis noted that in the single-injection condition, the maximum in-cylinder pressure and rate of heat release were highest. The pilot injection quantity was evenly divided, showing a tendency to decrease as the number of injections increased. In another injection condition, when the multi-stage pilot split injection strategy was applied, IMEP, engine torque, and combustion increased. The COVIMEP was greatest with the lowest combustion efficiency. The combustion ability was poor. In a single injection condition, the O2 concentration in the exhaust gas was the lowest and the CO2 was the highest. When the multi-stage split injection strategy was applied, the low temperature combustion process proceeded, and the oxidation rate of CO2 decreased while the emission level increased. In a single injection condition in which a locally rich mixture was formed, the HC emission level showed the highest results. A 55.6% reduction of NOx emission occurred under a three-stage pilot injection condition while conducting a multi-stage pilot split injection strategy.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Prediction of NOx emission for marine diesel engines of existing ship (선박용 디젤엔진의 NOx배출량 예측방법에 관한 연구)

  • Kim, Seong-Woon;Jung, Kyun-Sik;Kim, Houng-Soo;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.674-680
    • /
    • 2014
  • Monitoring systems of informations for ship performance have become important gradually for economical management of existing ship. Monitoring of NOx emission from marine diesel engines is one of them. The measurement of NOx emission, however has been many difficulties due to technical and costly problems. A monitoring by prediction method of NOx on-board ship according to sailing condition of ship could be an useful method. In this paper, it is discussed about modified method of one-zone model which has been utilized usually for analyzing the combustion process. The modified method is able to calculate the temperature of burned region from the result by one-zone model. Influences which excess air ratio during combustion process affected for the gas temperature and NOx emission were investigated. From the results variation of excess air ratio during combustion process could be estimated inversely through the comparison with measurement of NOx emission.

A Study on Types and Reasons of Engine Troubles Related to Fuel Oil (연료유에 의한 선박 디젤엔진 손상에 관한 연구)

  • Na, Eun-Young;Baik, Shin-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2009
  • Fuel oil mostly used for a ship is made from crude oil by refining process. In order to produce plenty of high-quality fuel oil, the Fluid catalytic cracking(FCC) method is widely adopted to many refinery factories during the decomposition process from high molecule into lower molecule. The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The big problem in FCC oil is mixing the catalyst in the oil. This reason is unstable separation of FCC catalyst in separator. Such a FCC catalyst will become a reason of heavy wear down in moving parts of engine. The impurity in oil is ash and deposit compound, such as Al, Si, Ni, Fe and V, which will accelerate the wear down on fuel pump, fuel injection valve cylinder liner and piston ring. It is important to find a basic reason of an engine trouble for preventing similar troubles anymore. Insurance compensation will be different according to the reason of an engine trouble which might be natural abrasion or other external causes. In this study, types and reasons of engine troubles related to fuel oil will be covered.

  • PDF

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.

Measurements and Calculation of Injection Mass Rate of LFG for Intake Injection in Spark Ignition Engines (불꽃점화 엔진의 흡기관 분사를 위한 매립지가스 분사량의 측정 및 계산)

  • Kim, Kyoungsu;Choi, Kyungho;Jeon, Wonil;Kim, Bada;Lee, Daeyup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • When the landfill gas generated at the landfill site is released into the atmosphere, methane gas with a high global warming potential is emitted, which adversely affects climate change. When methane contained in landfill gas is used as fuel for internal combustion engines and burned to generate electricity, it is emitted into the atmosphere in the form of carbon dioxide, which can contribute to lowering the global warming potential. Therefore, in order to use the landfill gas as fuel for power generation using an internal combustion engine, it is important to increase the thermal efficiency of the engine. Thus, it is necessary to use a fuel supply system in which gas is injected using an electronically controlled injector at an intake port for each cylinder rather than a fuel supply technology using the conventional mixer technology. In order to use the electronically controlled gas injection method, it is important to accurately measure the mass flow rate according to the conditions of using landfill gas. For this, a study was conducted to measure the injection amount and calculate them in order for the intake port gas injection of landfill gas.

Analysis of In-Cylinder Flow Characteristics of a High Speed D.I. Diesel Engines (고속 직접분사식 디젤 엔진의 실린더내 유동 해석)

  • Park, Sang-Chan;Ryu, Jae-Deok;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1276-1283
    • /
    • 2002
  • Recently, HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a 4-valve small diesel cylinder head with a tangential and helical intake port. The flow characteristics such as coefficient of flow rate(Cf), swirl ratio (Rs), and mass flow rate (ms) were measured in the steady flow test rig using the impulse swirl meter and the analysis of in-cylinder flow field was conducted by experiment using the PIV and calculation using the commercial CFD code. As the results from steady flow test indicate, the mass flow rate of the cylinder head with a short distance between the two intake ports is increased over 13% than that of the other head. However, the non-dimensional swirl ratio is decreased approximately 15%. From in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the velocity distribution became uniform near the TDC. In addition, the results of the calculation are good agreement with the experimental results.

A study on the effects of intake port eccentricity and a partition between the two intake ports on the in-cylinder swirl characteristics in a valve diesel engine (4밸브 디젤기관의 흡기포트 편심과 두 흡기포트 사이의 격막이 실린더 내 선회 특성에 미치는 영향에 관한 연구)

  • Lee, Ji-Geun;Gang, Sin-Jae;No, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.948-961
    • /
    • 1997
  • The effects of intake port eccentricity and a partition between the two intake ports on the incylinder swirl characteristics in a 4 valve diesel engine having the two intake ports, one is a helical intake port and the other is a tangential intake port, were investigated by using the impulse swirl meter(ISM) in a steady flow test rig. Mean flow coefficient ( $C_{f(mean)}$, swirl ratio ( $R_{s}$) and the mass flowrate through the two intake ports with and without intake port partition were measured. The results showed that the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by valve eccentricity ratio ( $N_{y}$) and the existence of an intake port partition between the two intake ports. Mean flow coefficient ( $C_{f(mean)}$) increases and swirl ratio ( $R_{s}$) decreases in case of being the partition between the two intake ports. And also the mass flowrate through the tangential intake port is 19.0% and 7.7% more than that of the helical intake port in case of the two intake ports with and without partition respectively.ively.