• Title/Summary/Keyword: 엔지니어링모델(engineering model)

Search Result 350, Processing Time 0.029 seconds

Large Eddy Simulation of Turbulent Pipe Flow (LES에 의한 원관 내 난류의 유동 해석)

  • 고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.437-446
    • /
    • 2003
  • A large eddy simulation (LES) is performed for turbulent pipe flow. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The effects of grid fineness which can be well prediction of turbulent behavior in near wall region is investigated. The subgrid scale turbulent models are applied and validated emphasis is placed on the flow details of turbulent pipe flow The calculated Reynolds number is 360 based on the wall shear velocity and the inlet pipe diameter. The predicted turbulent statistics are evaluated by comparing with the DNS data of turbulent pipe flow Performed by Eggels et al. The agreement of LES with DNS data is shown to be satisfactory. The proper grid fineness of the well prediction of turbulent pipe flow is suggested and the turbulent behavior is analyzed by depict the contour plot of fluctuating velocity components.

An Experimental Investigation on Condensation Heat Transfer Inside Vertical Tubes (수직관내 응축열전달에 관한 실험적 연구)

  • 윤정인;김재돌;김성규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.59-69
    • /
    • 1996
  • 냉동.공조 및 각종 화학공업에 널리 사용되는 열교환기인 응축기의 고성능화 및 합리적인 설계를 위해서는 냉매의 정확한 응축열전달률 예측과 그 메카니즘 규명이 필수 요건이다. 본 연구에서는 내경 9.7mm, 외경 12.7mm, 길이 1200mm의 수직 이중관 응축기의 압력강하 및 응축열전달특성을 실험적으로 밝혔다. 실험으로부터 Lockart-Martinelli의 상관 관계식을 이용한 수직 응축관내 압력강하 특성을 종래의 실험식들과 비교.검토하고 새로운 압력강하식을 제안하였다. 그리고 종래의 해석방법과는 달리 비환상류 모델을 가정한 해석결과로부터 전 유동양식에 걸쳐 적용할 수 있는 새로운 응축열전달 예측식을 제안하였다.

  • PDF

Study on the Optimum Rotor Blade Design of the 1 kW HAWT by BEMT (BEMT를 이용한 1 kW급 수평축 풍력발전용 로터 블레이드 형상 최적설계에 관한 연구)

  • Lee, Min-Woo;Kim, Jeong-Hwan;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.356-362
    • /
    • 2007
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The aerodynamic characteristics of NACA 63-415 airfoils were predicted via X-FOIL and the post stall characteristics were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the Velux wind tunnel test results. The rated power of the testing rotor is 1 kW at design conditions. The power, estimated by use of predicted lift and drag coefficient via X-FOIL becomes a little higher than experimental one.

Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.

Advanced One-zone Heat Release Analysis for IDI Diesel Engine (IDI 디젤기관의 개선된 단일영역 열발생량 계산)

  • Kim Gyu-Bo;Jeon Choung-Hwan;Chang Young-Jun;Lee Suk-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1101-1110
    • /
    • 2004
  • An one-zone heat release analysis was applied to a 4 cylinder indirect injection diesel engine. The objective of the study is to calculate heat release accurately considering the effect of specific heat ratio. heat transfer and crevice model and to find out combustion characteristics of an indirect diesel engine considering the effect of the pressures in main and swirl chambers. Especially specific heat ratio indicating combustion characteristics is adapted. instead of that indicating matter properties, which has been used in former studies Moreover by adaption of blowby model, cylinder gas mass became accurately calculated. Therefore, with ideal gas equation, calculating cylinder gas temperature, it was found to affect heat transfer loss and heat release. Determining heat transfer constants $C_1$. $C_2$ as 0.6 respectively. the integrated gross heat release values were predicted well for the measured value at various engine speed, full load operating conditions. The curve of heat release rate was similar to SI engine rather than DI engine. That is originated from that swirl chamber reduce an instant combustion which occurs in DI engine due to ignition delay on early stage of combustion.

An Adaptive Speed Control of a Diesel Engine by Means of the On-line Parameter Estimate (디젤기관의 on-line 파라미터 추정에 의한 적응 속도제어)

  • 유희한;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.20-26
    • /
    • 1996
  • Recently, for the speed control of a diesel engine, some methods using the modern control theory such as LQ control technique, or $\textit{H}_{\infty}$control theory etc., have been reported. However, most of speed controlers of a diesel engine ever developed are still using the PID control algorithm. And, as another approach to the speed control of a diesel engine, the authors proposed already a new method to adjust the parameters of the PID controller by a model matching method. In the previous paper, the authors confirmed that the proposed new method is superior to Ziegler & Nichols's method through the analysis of results of the digital simulations under the assumption that the parameters of a diesel engine are known exactly. But, actually, it is very difficult to find out the value of parameters of a diesel engine accurately. And the parameters of a diesel engine are changigng according to the operating condition of a diesel engine. So, in this paper, a method to estimate the parameters of the PID controller for the speed control of a diesel engine by means of the model matching method are proposed. Also, the digital simulations are carried out in cases either with or without measurement noise. And this paper confirms that the proposed method here is superior to Ziegler & Nichols's method through the analysis of the characteristics of indicial responses.

  • PDF

Effect of Underground Building for the Groundwater flow in the Ground Excavation (지반굴착에 따른 지반 안정성 평가 시 지하시설물이 지하수흐름에 미치는 영향 분석)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Byung-Chan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.17-28
    • /
    • 2018
  • The purpose of this study is to investigate the effect of underground facilities around excavation zone on groundwater flow characteristics during excavation. The scenarios were constructed considering the size of the underground facility, the separation distance, and the hydraulic gradient. As a result, as the size of the underground facility increases, the difference of head and the hydraulic gradient become large. The shorter the separation distance of underground facility is, the more the difference of head and the hydraulic gradient occur. The effect of hydraulic gradient on model area was relatively small. As a result of analysis of groundwater flow rate for the scenario, groundwater flow rate tends to decrease as the size of underground facility increases or groundwater flow rate tends to decrease as the separation distance decreases. It is necessary to examine the effect of underground facilities on the groundwater flow analysis in the ground excavation.

Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE (WiFi와 BLE 를 이용한 Log-Distance Path Loss Model 기반 Fingerprint Radio map 알고리즘)

  • Seong, Ju-Hyeon;Gwun, Teak-Gu;Lee, Seung-Hee;Kim, Jeong-Woo;Seo, Dong-hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • The fingerprint, which is one of the methods of indoor localization using WiFi, has been frequently studied because of its ability to be implemented via wireless access points. This method has low positioning resolution and high computational complexity compared to other methods, caused by its dependence of reference points in the radio map. In order to compensate for these problems, this paper presents a radio map designed algorithm based on the log-distance path loss model fusing a WiFi and BLE fingerprint. The proposed algorithm designs a radio map with variable values using the log-distance path loss model and reduces distance errors using a median filter. The experimental results of the proposed algorithm, compared with existing fingerprinting methods, show that the accuracy of positioning improved by from 2.747 m to 2.112 m, and the computational complexity reduced by a minimum of 33% according to the access points.

The Development of Productivity Prediction Model for Interior Finishes of Apartment using Deep Learning Techniques (Deep Learning 기반 공동주택 마감공사 단위작업별 생산성 예측모델 개발 - 내장공사를 중심으로 -)

  • Lee, Giryun;Han, Choong-Hee;Lee, Junbok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.3-12
    • /
    • 2019
  • Despite the importance and function of productivity information, in the Korean construction industry, the method of collecting and analyzing productivity data has not been organized. Also, in most cases, productivity management is reliant on the experience and intuitions of field managers, and productivity data are rarely being utilized in planning and management. Accordingly, this study intends to develop a prediction model for interior finishes of apartment using deep learning techniques, so as to provide a foundation for analyzing the productivity impacting factors and predicting productivity. The result of the study, productivity prediction model for interior finishes of apartment using deep learning techniques, can be a basic module of apartment project management system by applying deep learning to reliable productivity data and developing as data is accumulated in the future. It can also be used in project engineering processes such as estimating work, calculating work days for process planning, and calculating input labor based on productivity data from similar projects in the past. Further, when productivity diverging from predicted productivity is discovered during construction, it is expected that it will be possible to analyze the cause(s) thereof and implement prompt response and preventive measures.

A Study on the Priority of Site Selection for Hydrogen Vehicle Charging Facilities in Seoul Using a Market Demand Prediction Model (시장수요예측 모델을 활용한 서울시 수소차 충전시설의 입지선정 우선순위에 관한 연구)

  • Jin Sick, Kim;Kook Jin, Jang;Joo Yeoun, Lee;Myoung Sug, Jung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • Hydrogen is expected to be widely applied in most sectors within the current energy system, such as transportation and logistics, and is expected to be economically and technologically utilized as a power source to achieve vehiclebon emission reduction. In particular, the construction of hydrogen charging station infrastructure will not only support the distribution of hydrogen electric vehicles, but also play an important role in building a hydrogen logistics system. Therefore, This paper suggest additional charging infrastructure areas in Seoul with a focus on supply according to the annual average growth rate (CAGR), centering on Seoul, where hydrogen vehicles are most widely distributed. As of February 2022, hydrogen charging infrastructures were installed in Gangseo-gu, Gangdong-gu, Mapo-gu, Jung-gu, and Seocho-gu in downtown Seoul. Next, looking at the number of hydrogen vehicles by administrative dong in Seoul from 2018 to 2022, Seocho-gu has the most with 246 as of 2022, and Dongjak-gu has the highest average growth rate of 215.4% with a CAGR of 215.4%. Therefore, as a result of CAGR analysis, Dongjak-gu is expected to supply the most hydrogen vehicles in the future, and Seocho-gu currently has the most hydrogen vehicles, so it is likely that additional hydrogen charging infrastructure will be needed between Dongjak-gu and Seocho-gu.