• Title/Summary/Keyword: 엔드밀 공구

Search Result 152, Processing Time 0.02 seconds

Monitoring of tool conditions in high-speed machining of die material (금형강의 고속가공시 공구상태의 감시)

  • Hur, Hyun;Lee, Ki-Young;Jeong, Yung-Ho;Lee, Deug-Woo;Kim, Jeong-Suk;Hwang, Kyung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.131-134
    • /
    • 1995
  • The high efficiency and accuracy in machining the die material can be abtained in high speed machining, so it is necessary to analyze the mechanism of high speed cutting process : cutting force, flank wear. The tool dynomometer with high natural frequency is newly developed. With this device, the mechanism of high speed cutting process is investigated according to speed and feedate.

  • PDF

Chaotic Analysis of Multi-Sensor Signal in End-Milling Process (엔드밀가공시 복합계측 신호에 의한 공구 마멸의 카오스적 해석)

  • 구세진;이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.817-821
    • /
    • 1997
  • Ever since the nonlinearity of machine tool dynamics was established, researchers attempted to make use of this fact to devise better monitoring, diagnostics and system, which were hitherto based on linear models. Theory of chaos, which explains many nonlinear phenomena comes handy for furthering the analysis using nonlinear model. In this study, measuring system will be constructed using multi-sensor (Tool Dynamometer, Acoustic Emission) in end millingprocess. Then, it will be verified that cutting force is low-dimensional deterministic chaos calculating Lyapunov exponents, Fractal dimension, Embedding dimension. Aen it will be investigated that the relations between characteristic parameter caculated form sensor signal and tool wear.

  • PDF

A Study on Cutting Characteristics According to Cutting Direction in Ball-End Milling (볼 엔드밀 가공시 공구경로에 따른 절삭특성에 관한 연구)

  • Cho, Byoung-Moo;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.191-197
    • /
    • 2007
  • Inclined surface milling in the mould and die industries is one of the most commonly needed cutting process. For the variety and complexity of cutting characteristics in various cutting condition, it is difficult to select a optimal tool path orientation. Especially, when the cutting process becomes unstable, it induces self-exited vibrations, a frequent cause of poor tool life, rough surface finish, damage to the workpiece and the machine tool itself, and excessive down time. The comparative results through FFT analysis in this study provide a guideline for the selection tool path orientation.

Machining Precision according to the Change of Feedrate when Ball Endmilling of Semisphere Shape (볼 엔드밀에 의한 반구 가공시 이송속도 변화에 따른 가공정밀도)

  • 임채열;우정윤;김종업;왕덕현;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.930-933
    • /
    • 2000
  • Experimental study was conducted for finding the characteristics of machining precision according to the change of feedrate when ball endmilling of semisphere shape. The values of tool deflection and cutting force were measured simultaneously by the systems of eddy-current sensor and dynamometer. The machining precision was analyzed by roundness values, which were deeply relating with tool deflection and forces. the roundness was decreased in down-milling than in up-milling for each feedrate. As the cutting edge is moved to radius direction on the tool path, the tool deflection and the cutting force were seemed to be decreased. As the tool path was moved downward, the values of roundness, cutting force and tool deflection were obtained better ones. When compared the values of roundness, cutting force and tool deflection for different feedrate, the best machining accuracy was obtained at feed rate of 90mm/min in down-milling.

  • PDF

A Study on Deflection of Tool in Ball-End Milling (볼 엔드밀 가공시 공구변형에 관한 연구)

  • Du, Seung;Seo, Han-Won;Yoo, Ki-Hyun;Seo, Nam-Sub
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.721-724
    • /
    • 2000
  • This paper presents a prediction of tool deflection and resulting machining error fur sculptured surface productions in the ball-end milling process. Due to the different materials and the dimensions of the tool holder and cutter, a cantilever hem model with three uniform sections is proposed fur the tool deflection model. The ability of this model has been verified by a machining experiment. In this study, cutting force and machining error are investigated. This paper provides the prediction of machining error for sculptured surface to improve machining quality for industrial application.

  • PDF

Chaotic analysis of tool wear using multi-sensor signal in end-milling process (엔드밀가공시 복합계측 신호를 이용한 공구 마멸의 카오스적 해석)

  • Kim, J.S.;Kang, M.C.;Ku, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.93-101
    • /
    • 1997
  • Ever since the nonlinearity of machine tool dynamics was established, researchers attempted to make use of this fact to devise better monitoring, diagnostics and control system, which were hitherto based on linear models. Theory of chaos which explains many nonlinear phenomena comes handy for furthering the analysis using nonlinear model. In this study, measuring system will be constructed using multi-sensor (Tool Dynamometer, Acoustic Emission) in end milling process. Then, it will be verified that cutting force is low-dimensional chaos by calculating Lyapunov exponents. Fractal dimension, embedding dimension. And it will be investigated that the relation between characteristic parameter calculated from sensor signal and tool wear.

  • PDF

Evaluation of vibration property and machinability of spindle system in high speed machining center (고속 머시닝센터의 주축계 진동특성과 가공성 평가)

  • 김전하;강명창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.16-21
    • /
    • 2002
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation fer the HMC is not sufficiently performed and the efficient cutting conditions aren't selected, a great loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented from the analysis of acceleration in idling. The Machinability fur the TiAlN coated flat end mill and STD11( $H_{R}$C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions and slenderness ratio and a low response of tool dynamometer in high speed is proved. The resonance spindle speed is identified through the tool wear and natural frequency test.t.

  • PDF

Characteristics of Tool Life according to the Cutting Direction and Cutting Speed in Machining on Inclined Plane using Ball End Mill (볼 엔드밀의 경사면 가공에서 공구경로와 절삭속도에 따른 공구수명의 특성)

  • 박윤종;김경균;강명창;김정석;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.240-244
    • /
    • 1999
  • This paper deals with the establishment of the cutting direction on inclined plane by using ball end mill. Ball-end milling is widely used for free form surface die and mold. In these machining, the cutting parts vary because the tool tip is hemisphere shaped. The cutting characteristics, such as cutting force, surface roughness and surface profile are varied according to the variation of cutting directions. The effective tool diameter was calculated on different tilt angles and tool-path. Tool life and cutting characteristics were estimated on variation of cutting directions in the same cutting speed. In this paper, the optimal cutting direction which can be applied 3-D sculpture surface cutting is suggested.

  • PDF

Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes (미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상)

  • Sohn, Jong-In;Yoon, Gil-Sang;Seo, Tae-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.

Plane Surface Generation with a Flat End Mill (평 엔드밀을 이용한 평면가공에서의 가공면 형성기구)

  • Ryu, Si-Hyeong;Kim, Min-Tae;Choe, Deok-Gi;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF