• Title/Summary/Keyword: 엑서지경제학

Search Result 3, Processing Time 0.024 seconds

Suggestion of Power and Heat Costing for an Energy System (에너지 시스템에 대한 전력 및 열 비용산정)

  • 김덕진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.360-371
    • /
    • 2003
  • The calculation of each unit cost of productions is very important for evaluating the economical efficiency and deciding the reasonable sale price. In the present, two methods of exergy costing on multiple energy systems are suggested to reduce the complexities of conventional SPECO method and MOPSA method and to improve the calculation efficiency of exergoeconomics. The suggested methods were applied to a gas-turbine cogeneration and the unit costs of the power and the steam energy were calculated as an example. The main points of our methods are the following three. First, one exergetic cost is applied to one cycle or system. Second, the suggested equations are the internal cost balance equation and the production cost balance equation. Third, necessary states in a system are only inlet and exit states of 1ha components producing energy.

Exergy Analysis of Cryogenic Air Separation Unit for Oxy-fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 엑서지 분석)

  • Choi, Hyeung-chul;Moon, Hung-man;Cho, Jung-ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • In order to solve the global warming and reduce greenhouse gas emissions, $CO_2$ capture technology was developed by applying oxy-fuel combustion. But there has been such a problem that its economic efficiency is low due to the high price of oxygen gases. ASU is known to be most suitable method to produce large quantity of oxygen, to reduce the oxygen production cost, the efficiency of ASU need to be improved. To improve the efficiency of ASU, exergy analysis can be used. The exergy analysis provides the information of used energy in the process, the location and size of exergy destruction. In this study, the exergy analysis was used for process developing and optimization of large scale ASU. The process simulation of ASU was conducted, the results were used to calculate the exergy. As a result, to reduce the exergy loss in the cold box of ASU, a lower operating pressure process was suggested. It was confirmed the importance of heat leak and heat loss reduction of cold box. Also, the unit process of ASU which requires thermal integration was confirmed.

A Suggestion of New Methodology on Thermoeconomics (열경제학에 대한 새로운 방법론 제안)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.315-320
    • /
    • 2009
  • Thermoeconomics or exergoeconomics can be classified into the three fields of cost estimating, cost optimization, and internal cost analysis. The objective of cost estimating is to estimate each unit cost of product and allocate each cost flow of product such as electricity or hot water. The objective of optimization is to minimize the input costs of capital and energy resource or maximize the output costs of products under the given constraints. The objective of internal cost analysis is to find out the cost formation process and calculate the amount of cost flow at each state, each component, and overall system. In this study, a new thermoeconomic methodology was proposed in the three fields. The proposed methodology is very simple and obvious. That is, the equation is only each one, and there are no auxiliary equations. Any energy including enthalpy and exergy can be applied and evaluated by this equation. As a new field, the cost allocation methodology on cool air or hot air produced from an air-condition system was proposed. Extending this concept, the proposed methodology can be applied to any complex system.

  • PDF