• Title/Summary/Keyword: 에폭시수지 혼입 모르타르

Search Result 12, Processing Time 0.026 seconds

Drying Shrinkage and Pore Structure of Self-Healing Epoxy-Modified Mortars Using Expansive Admixtures (팽창성 혼화재를 병용한 에폭시수지 혼입 자기치유 모르타르의 건조수축 및 세공구조)

  • Ham, Seong-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.166-167
    • /
    • 2015
  • The purpose of this study is to examine the effect on drying shrinkage of self-healing epoxy-modified mortars(EPMMs) using expansive admixtures. The EPMMs are prepared with polymer-binder ratios of 0 and 10%, and tested for drying shrinkage and pore structure analysis. As a result, regardless of the expansion and swelling agent content, the drying shrinkage of the EPMMs is remarkably decreased than that of unmodified mortars. Also, the pore size distribution of the EPMMs is moved to smaller size in comparison with unmodified mortars. In this study, the EPMM with expansive agent 7.5% and swelling agent 2.5% is recommended as a optimal mix proportion for reduction of drying shrinkage.

  • PDF

Properties of Epoxy-Modified Mortars with Alkali Activators and Ground Granulated Blast Furnace Slag (알칼리자극제 및 고로슬래그미분말을 병용한 에폭시수지 혼입 폴리머 시멘트 모르타르의 성질)

  • Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this study is to investigate the properties of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS) and alkali activators. The hardener-free EMMs with a GGBFS content of 20% using 4 types of alkali activators were prepared with various polymer-binder ratios, and tested for strengths, water absorption, carbonation depth, chloride ion and H2SO4 penetration depth. The conclusions obtained from the test results are summarized as follows: The compressive strength of the EMMs with a GGBFS content of 20% attains a maximum at a polymer-binder ratio of 10%. The flexural strength of the hardener-free EMMs using Ca(OH)2 as a alkali activator is improved with increasing polymer-binder ratios. However, the flexural strength of the EMMs using NaCO3, Na2SO4 and Li2CO3 is gradually decreased with increasing polymer-binder ratios. Regardless of the type of alkali activator, the water absorption, chloride ion penetration and carbonation depth are remarkably decreased with increasing polymer-binder ratios due to the epoxy film formed in the EMMs. The H2SO4 penetration depth of the hardener-free EMMs with a GGBFS content of 20% is gradually increased with increasing polymer-binder ratio. In this study, the properties of hardener-free EMMs using Ca(OH)2 as a alkali activator are more excellent than those of other alkali activators.

Self-Healing Investigation of Bisphenol F-Type Epoxy-Modified Mortars with Expansive Admixtures Under Outdoor Exposure Conditions (환경조건에 따른 팽창성 혼화재 및 비스페놀 F형 에폭시수지 병용 모르타르의 자기치유 검토)

  • Park, Seung-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.22-23
    • /
    • 2017
  • The purpose of this study is to ascertain self-healing function on microcracks in bisphenol F-type epoxy-modified mortars using expansive admixtures. The specimens are prepared with various polymer-binder ratios of 0, 5, 10, 20%, expansive admixture contents of 0% and 10%, a sodium carbonate content of 0.25%, and subjected to exposure conditions of CR1, CR2, CR3 and CR4. The specimens are tested for self-healing effect, porosity and FE-SEM analysis. As a result, self-healing effects of bisphenol F-type EPMMs with expansive admixtures are visible in all of the outdoor exposure conditions. In particular, exposure conditions of CR3 and CR4 are most noticeable. And the porosity of EPMMs is reduced with an increase in the polymer-binder ratio, and is considerably smaller than that of unmodified mortar.

  • PDF

Strength Properties of Epoxy-Modified Mortars with Expansive and Swelling Agents (팽창재 및 팽윤재를 병용한 에폭시수지 혼입 시멘트 모르타르의 강도특성)

  • Ham, Seong-Min;Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.288-289
    • /
    • 2014
  • The purpose of this research is to examine strength properties of epoxy-modified mortar with expansive and swelling agent contents. The polymer-modified mortars (PMMs) using epoxy resin are prepared with various polymer-binder ratios, expansive and swelling agent contents. The PMMs using epoxy resin are tested for compressive, flexural and tensile strengths. As a result, the strength properties of the PMMs using epoxy resin are depending on the polymer-binder ratio rather than expansive and swelling agent content, and are remarkably improved over unmodified mortar (UMM).

  • PDF

Strength Properties and Pore Structure of Epoxy-Modified Mortars under Steam and Steam/Heat Combined Curing (증기 및 가열 조합양생에 의한 에폭시수지 혼입 모르타르의 강도 및 세공구조)

  • Lee, Jae-Hwa;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.107-108
    • /
    • 2011
  • The purpose of present study is to examine the application of effective curing to hardener-free epoxy-modified mortars. The epoxy-modified mortars are prepared with polymer-cement ratios, subjected to two types of curing conditions, and tested for compressive, flexural and tensile strengths. As a result, hardener-free epoxy-modified mortars with steam curing is markedly improved with increasing air-dry curing period. High strength development of the epoxy-modified mortars may be achieved by the dense microstructure by cement and the hardener of the epoxy resin in the mortars.

  • PDF

Long-term Strength Improvement of Epoxy-Modified Mortars with Steam Curing (증기양생에 의한 에폭시수지 혼입 PMM의 장기강도 발현)

  • Lee, Jae-Hwa;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.263-264
    • /
    • 2012
  • The purpose of present study is to examine the long-term strength improvement of hardener-free epoxy-modified mortars with steam curing. As a result, strength improvement of hardener-free epoxy-modified mortars is markedly improved with increasing of air-dry curing period. This is improved by markedly increase the degree of hardening of the hardener-free epoxy resin in the epoxy-modified mortars with additional air-dry curing period.

  • PDF

Strenghts and Hardening Properties of Epoxy-modififed Mortars Using Wood-Tar of Wood By-Product (목재 부산물인 목타르를 활용한 에폭시수지 혼입 PMM의 강도 및 경화특성)

  • Kim, Joo-Young;Ham, Seong-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.21-22
    • /
    • 2014
  • The purpose of this study is to ascertain strengths and hardening rate of epoxy-modified mortar with wood-tar contents. The polymer-modified mortars (PMMs) using epoxy resin with wood-tar are prepared with various polymer-binder ratios of 1, 3, 5% and wood-tar contents of 0, 5, 10, 15 and 20%. The PMMs using epoxy resin are tested for compressive, flexural and tensile strengths and hardening rate of epoxy resin. As a result, the strengths and hardening rate under polymer-binder ratio 1% and wood-tar content of 5% are more excellent than those of other specimens.

  • PDF

Investigation of Physical Properties and Self Healing of Hardener-Free Epoxy-Modified Mortars with GGBFS (고로슬래그미분말을 혼입한 경화제 무첨가 에폭시수지 모르타르의 물리적 성질 및 자기치유 검토)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • The purpose of this study is to investigate the physical properties and self-healing effects of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS). The EMMs with GGBFS were prepared with various polymer-binder ratios and GGBFS contents, and tested for strengths, adhesion in tension, water permeation and self-healing effects. The conclusions obtained from the test results are summarized as follows. The compressive strength of the EMMs with GGBFS is reduced with increasing polymer-binder ratios because of reduction of the degree of hardening in the EMMs, and is somewhat inferior to that of unmodified mortars. In the flexural and tensile strengths, the flexural strength of the EMMs is almost constant with increasing polymer-binder ratios. However, the tensile strength of the EMMs is gradually increased with increasing polymer-binder ratios. Regardless of the GGBFS contents, the adhesion in tension of the EMMs increases sharply with increasing polymer-binder ratios. The water permeation of the EMMs is remarkably reduced with increasing polymer-binder ratios and GGBFS contents. The self-healing effect of the hardener-free EMMs with GGBFS is improved with increasing water immersion period at a GGBFS content of 20%.

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Bisphenol A and F Type Epoxy Resin with Calumite (비스페놀 A 및 F형 에폭시수지와 칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Joo-Young;Kim, Wan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.517-524
    • /
    • 2014
  • Nitrite-Type hydrocalumite (calumite) is a material that can adsorb chloride ions ($Cl^-$) that cause corrosion of reinforce bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete. In this study, polymer-modified mortars using two types of epoxy resin with calumite are prepared with various polymer binder-ratios of 0, 5, 10, 15, 20% and calumite contents of 0, 5%. The specimens are tested for chloride ion penetration, carbonation, drying shrinkage and corrosion inhibition. As a result, the chloride ion penetration and carbonation depth of PMM using epoxy resin somewhat increases with increasing calumite contents, but those remarkably decreases depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to decrease with increasing polymer-binder ratio and calumite content. Unmodified mortars with calumite content of 5% did not satisfy quality requirement by KS. However, it was satisfied with KS requirement by the modification of epoxy resin in cement mortar. On the whole, the carbonation and chloride ion penetration depth of epoxy-modified mortars with calumite is considerably improved with an increase in the polymer-binder ratio regardless of the calumite content, and is remarkably improved over unmodified mortar. And, the replacement of the portland cement with the calumite has a marked effect in the corrosion-inhibiting property of the epoxy-modified mortars.

Strength Properties of Bisphenol A-Type Epoxy-Modified Mortars under Various Curing Conditions (각종 양생조건에 따른 비스페놀 A형 에폭시수지 혼입 모르타르의 강도성상)

  • Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.55-59
    • /
    • 2009
  • The epoxy resin without hardener can harden by a ring-opening reaction in the presence of the alkalies produced by the hydration of cement in epoxy-modified mortars and concretes. This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using bisphenol A-type epoxy resin without hardener. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to ideal, water, dry and heat cures. In the heat cure, the epoxy-modified mortars are sealed or unsealed with a PVDC (polyvinylidene chloride) film. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. The microstructures of the epoxy-modified mortars are also observed by scanning electron microscope. The effects of curing conditions on the strength development of the epoxy-modified mortars are examined. From the test results, the marked effectiveness of the heat cure under the PVDC film sealing against the development of the strength of the epoxy-modified mortar without the hardener is recognized. The flexural and compressive strengths of 7-day-90℃ heat-cured, PVDC film-sealed epoxy-modified mortars without hardener reach 7 to 17MPa and 24 to 44MPa respectively, and are two to three times of Unmodified mortar. Such high strength development of the epoxy-modified mortars may be achieved by the dense microstructure formation by cement hydrates and the hardening of the epoxy resin in the mortars.

  • PDF