• Title/Summary/Keyword: 에틸렌 생성

Search Result 194, Processing Time 0.031 seconds

환경 스트레스, 활성산소와 스트레스-에틸렌 간의 상호관계

  • 이호준;오승은
    • The Korean Journal of Ecology
    • /
    • v.17 no.1
    • /
    • pp.91-100
    • /
    • 1994
  • Although the types of stress are various, environmental stresses generally increase the amounts of reactive oxygen species in plants. These reactive oxygen species stimulate stress-ethylene synthesis and accelerate senescence of plants. However, when stress-ethylene synthesis is suppressed through antioxidative enzymes and antioxidants, the resistance of plants against stress could be induced by limited production of ethylene.

  • PDF

Effects of Methylglyoxal-bis (Guanylhydrazone) and Ethylene Synthesis Inhibitor on Adventitious Root formation from Soybean Cotyledon (Methylglyoxal-bis (Guanylhydrazone)와 에틸렌 생합성 저해제가 대두 자엽 부정근 형성에 미치는 영향)

  • 조형일;한태진;하건수;이순희;김응식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.6
    • /
    • pp.327-332
    • /
    • 1994
  • The effect of methylglyoxal-bis (guanylhydrazone) (MGBG) and ethylene synthesis inhibitors on adventitious root formation from soybean cotyledon in relation to ethylene production and endogenous polyamine content was investigated. Cotyledon explants cultured on rooting medium formed numerous adventitious rook on the cut surfaces after 2 weeks of culture. However when cultured on rooting medium supplemented with MGBG, the root formation was strongly inhibited, its inhibitory effect was reserved when cultured on medium with MGBG + spermine, MGBG + CoCl$_2$ and MGBG + spermine+CoC1$_2$. A slight reversion of the rooting inhibition was observed in 10$^{-3}$ M MGBG +10$^{-5}$ M spermine treatment, whereas it caused a significant effect in 10$^{-3}$ M MGBG +10$^{-4}$ M treatment .Ethylene production and endogenous polymine content was investgated in 10$^{-3}$ M MGBG , 10$^{-3}$ M MGBG +10$^{-5}$ Mspermine, 10$^{-3}$ M MGBG +10$^{-4}$ M CoCl$_2$and 10$^{-3}$ M MGBG +10$^{-5}$ M spermine +10$^{-4}$ M CoCl$_2$treatments. Ethylene production highest in 10$^{-3}$ M MGBG +10$^{-5}$ M spermine treatment was higher than control. In 10$^{-3}$ M MGBG +10$^{-5}$ M spermine + 10$^{-4}$ M CoCl$_2$ treatment, ethilene production was lowest, whereas polyamine level was highest.

  • PDF

The Association of Post-Storage Physiological Disorder Incidence with Respiration and Ethylene Production in 'Fuyu' Persimmon Fruits ('부유' 단감 과실에서 저장 후 생리적 장해 발생과 호흡 및 에틸렌 생성의 상호 관계)

  • Ahn, Gwang-Hwan;Song, Won-Doo;Choi, Seong-Jin;Lee, Dong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.283-287
    • /
    • 2004
  • Persimmons suffer from such physiological disorders as flesh softening, peel blackening, and flesh browning, which occur rapidly particularly when exposed to ambient temperature after storage at low temperature, In this study causes of these disorders were examined in terms of respiration and ethylene production of the fruits. Jelly-like flesh softening, considered as symptom of chilling injury, rapidly developed within 3 days of exposure to ambient temperature without modified atmosphere (MA) packaging after low temperature storage. Disorder development was more suppressed at $30^{\circ}C$ than at $20^{\circ}C$; such temperature dependence is closely connected to ethylene production rate of fruits at both temperatures. Inhibition of ethylene production through MA packaging effectively reduced disorder development, which indicates ethylene production is closely related to jelly-like flesh softening disorder. Development of black-staining on peels occurs in fruits exposed directly to ambient temperature, but not in those packaged with thick PE-film. Flesh browning developed only under anaerobic respiration condition of high temperature and MA packaging with thick PE film, and occurred at quick reduction of available oxygen inside MA package at high temperature.

An analysis of influence on chemical additives in gas hydrate formation (하이드레이트 제조시 다양한 화학물질 첨가에 의한 영향 분석)

  • Lee Young-Chul;Mo Yong-Gi;Cho Byoung-Hak;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.23-29
    • /
    • 2004
  • This work carried out experiment to change characteristics of hydrate formation using various chemicals which are acetone, dimethylbutane, polyvinylalcohol, methanol and ethlyene glycol as additives in gas hydrate formation. Gas storage ability of formed hydrate with acetone, firnethylbuthane and polyvinylalcohol in gas hydrate formation increased higher than that obtained with pure water. Among them polyvinylalcohol showed best gas storage ability, so it is a more useful promoter Methanol and Ethylene gl?col in using additives showed the characteristics of inhibitor and methanol is lower gas storage ability than ethylene gl)rcol as a inhibitor in hydrate formation, so it is a more useful inhibitor. But, low concentration of methanol and ethylene glycol showed considerably higher gas storage ability of hydrate than that obtained with Pure water and showed the characteristics of promoter in gas hydrate formation.

  • PDF

Phytochromes are Involved in the Regulation of Growth and the Gravitropic Response via Ethylene Production in Hypocotyl of Arabidopsis (애기장대의 하배축에서 피토크롬이 생장과 굴중성 반응에 미치는 영향)

  • Lee, Sang Seung;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Light is essential to the growth and development of plants, and it is perceived by phytochromes, which are one of the photoreceptors that regulate physiological responses in plants. Ethylene regulates the dormancy, senescence, growth, and development of organs in plants. This research focused on the interaction of phytochromes and ethylene to control hypocotyl growth and gravitropism using phytochrome mutants of Arabidopsis, phyA, phyB, and phyAB, under three light conditions: red (R) light, farred (FR) light, and white light. The mutant phyAB exhibited the most stimulation of gravitropic response of all three phytochrome mutants and wild type (WT) in all three light conditions. Moreover, phyB in the R light condition showed more negative gravitropism than phyA. However, phyB in the FR light condition showed less curvature than phyA. The hypocotyl growth pattern was similar to the gravitropic response in several light conditions. To explain the mechanism of the regulation of gravitropic response and growth, we measured the ethylene production and activities of in vitro ACS and ACO. Ethylene production was reduced in all the mutants grown in white light in comparison to the WT. Ethylene production increased in the phyA grown in R light and phyB grown in FR light in comparison to the other mutants. The ACS activity coincided with the ethylene production in the phyA and the phyB grown in R light and FR light, respectively. These results suggest that the Pfr form of phyB in R light and the Pr form of phyA in FR light increased ethylene production via increasing ACS activity.

Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots (옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과)

  • Kim, Chungsu;Mulkey, Timothy J.;Kim, Jong-Sik;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1223-1229
    • /
    • 2015
  • Oryzalin is a dinitroaniline herbicide, which disrupts the arrangement of microtubules. Microtubules and microfilaments are cytoskeletal components that are thought to play a role in the sedimentation of statoliths and the formation of cell walls. Statoliths regulate the perception of gravity by columella cells in the root tip. To determine the effect of oryzalin on the gravitropic response, ethylene production in primary roots of maize was investigated. Treatment with 10-4 M oryzalin to the root tip inhibited the growth and gravitropic response of the roots. However, the treatment had no effect on the elongation zone of the roots. An application of 10-4 M oryzalin for 15 hr to the root tip caused root tip swelling. The application of 1-aminocycopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the root tip also inhibited the gravitropic response. To understand the role of oryzalin in the regulation of the growth and gravitropic response of roots, ethylene production in the primary roots of maize was measured following treatment with oryzalin. Oryzalin stimulated ethylene production via the activation of ACC oxidase (ACO) and ACC synthase (ACS), and it increased the expression of ACO and ACS genes. Indole-3-acetic acid (IAA) played a key role in the asymmetric elongation rates observed during gravitropism. The results suggest that oryzalin alters the gravitropic response of maize roots through modification of the arrangement of microtubules. This might reduce the distribution of IAA in the upper and lower sides of the elongation zone and increase ethylene production, thereby inhibiting growth and gravitropic responses.

The Effect of Adsorbed Oxygen Species on the Partial Oxidation of Ethylene over Ag/α-Al2O3 (Ag/α-Al2O3 촉매상에서의 에틸렌 부분산화반응에 미치는 흡착산소종의 영향)

  • Baik, Choong-Hoon;Lee, Sang-Gi;Yeo, Jong-Kee;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.609-615
    • /
    • 1994
  • Partial oxidation of ethylene over 10wt% $Ag/{\alpha}-Al_2O_3$ catalyst was studied with a pulse reactor which was connected directly to a G. C. When ethylene was injected after oxygen injection at the temperature where molecular adsorption of oxygen is difficult ethylene oxide was evolved. From the results, it is suggested that adsorbed atomic oxygen is related with the evolution of ethylene oxide. The selectivity to ethylene oxide decreased with the decrease of the amounts of adsorbed oxygen and bulk oxygen. Ethylene oxide was either decomposed to ethylene and adsorbed oxygen or isomerized to acetaldehyde. However, the isomerization of ethylene oxide to acetaldehyde was strongly suppressed by the preadsorbed oxygen.

  • PDF

Effects of Fertilization Methods on Ethylene Evolution and Shattering in Rice Grains (시비법의 벼의 탈입과 Ethylene 생성에 미치는 영향)

  • 박광호;강양순;이재생;정연태
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.341-344
    • /
    • 1989
  • The relationship between the rates of rice grain shattering caused by typhoon and characteristics considered to be related with grain shattering such as heading date, amount of grain production and ethylene evolution of rice plant grown under the different methods of fertilization was analyzed. The grain shattering rates which was traced by the fallen grains after typhoon 'Dinah' occured in August 28 to 29, 1987, in the plots with nitrogen such as nitrogen alone, NP, NK, NPK, NPK + SiO$_2$ and NPK+compost plot etc. was lower than that in without nitrogen plots such as no fertilizer, compost alone, PK, P and K alone etc. and the amount of ethylene evolved from the leaf blades also showed the same trends. The correlation between the grain shattering rate and grain yield was negative but ethylene evolution was positively correlated with grain shattering rate of rice plant.ice plant.

  • PDF

Comparison of the Change in Quality and Ethylene Production between Apple and Peach Fruits Treated with 1-Methylcyclopropene (1-MCP) (1-Methylcyclopropene (1-MCP) 처리에 따른 사과와 복숭아 과실의 품질 및 에틸렌 생성 변화의 비교)

  • Choi Seong-Jin
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.511-515
    • /
    • 2005
  • The responses of 'Tsugaru' apple and 'Baekhyang' peach fruits treated with 1-MCP, the ethylene inhibitor, were compared. In Tsugaru apple fruits, the reduction of flesh firmness and titratable acidity were significantly retarded for 2 weeks by the treating fruits with 1 or 5 ppm of 1-MCP immediately after harvest The respiration decreased continually for 2 weeks and the onset of ethylene production were also retarded severely. However, in Baekhyang peach fruits, the effects of 1-MCP treatment on the respiration and ethylene production were only transient and the firmness reduction was retarded slightly by the repeated 1-MCP treatments. The responsiveness of the Baekhyang peach fruits on ethylene seems to be recovered rapidly after 1-MCP treatment. In case of Baekhyang fruits, the 1-MCP should be treated repeatedly for effective ethylene inhibition, and the ethylene accumulation should be avoided during the 1-MCP treatment.

Ca2+ Regulators affect the Gravitropism and Ethylene Production Induced by Malformin A1 in Maize Root (옥수수 뿌리에서 칼슘 이온 조절제가 malformin A1에 의해 유도된 굴중성과 에틸렌 생합성에 미치는 영향)

  • Hong, Sung-Hyun;Oh, Seung-Eun;Kim, Kun-Woo;Jeong, Hyung-Jin;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.174-178
    • /
    • 2007
  • Treatment of malformin A1 is known to increase ethylene production 130% at 4 hr and 56% at 8 hr after treatment in maize root compared to untreated plants. The ethylene production by malformin A1 was maximum level at 4 hr and slowly decreased up to 8 hr. Calcium ion regulators such as A23187 (calcium ionophore) and verapamil (calcium channel blocker) stimulated ethylene production. Treatment of both calcium ion regulators increased about 30% of ethylene production at 4 hr, and 20% at 8 hr. Both calcium ion regulators did not stimulate malformin A1-induced ethylene production at 4 hr as malformin A1 itself did. However, the treatment of calcium ion regulators with malformin A1 maintains the ethylene production for 8 hr. These results suggested that the proper concentration of calcium might need to confer the effect of malformin A1 on the ethylene production. Malformin A1 suppressed the gravitropic curvature of maize root about 58% at 4 hr and 42% at 8 hr compared to control plant. Verapamil inhibited the gravitropic curvature about 54% at 4 hr and 23% at 8 hr compared to control, respectively. But A23187 could not. In addition, verapamil showed more inhibition in malformin A1-induced gravitropic curvature than A23187 in malformin A1 induced. These data suggested that calcium ion regulators affect the malformin A1-induced ethylene production and gravitropic curvature, and give the evidence that calcium ion play an important role in gravitropic curvature in maize root.