• Title/Summary/Keyword: 에칭액

Search Result 50, Processing Time 0.022 seconds

Regeneration of Waste Ferric Chloride Etchant Using HCl and $H_2O_2$ (HCl과 $H_2O_2$를 이용한 폐 $FeCl_3$ 에칭액의 재생)

  • Lee, Hoyeon;Ahn, Eunsaem;Park, Changhyun;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.67-71
    • /
    • 2013
  • $FeCl_3$ has been used as an etchant for metal etching such as Fe, Cu, and Al. In the process of metal etching, $Fe^{3+}$ is reducted to $Fe^{2+}$ and the etching rate becomes slow and etching efficiency decreased. Waste $FeCl_3$ etchant needs to be regenerated because of its toxicity and treatment cost. In this work, HCl was initially mixed with the waste $FeCl_3$ and then, strong oxidants, such as $O_2$ and $H_2O_2$, were added into the mixed solution to regenerate the waste etchant. During successive etching and regeneration processes, oxygen-reduction potential (ORP) was continuously measured and the relationship between ORP and etching capability was investigated. Regenerated etchant using a two vol% HCl of the total etchant volume and a very small amount of $H_2O_2$ was very effective in recovering etching capability. During the etching-regeneration process, the same oxygen-reduction potential variation cannot be repeated every cycle since concentrations of $Fe^{2+}$ and $Fe^{3+}$ ions were continuously changed. It suggested that the control of etching-regeneration process based on the etching time becomes more efficient than that of the process based on oxygen reduction potential changes.

Cross-flow Nanofiltration of PCB Etching Waste Solution Containing Copper Ion (구리이온을 함유한 PCB 폐에칭액의 Cross-flow 나노여과)

  • Park, Hye-Ri;Nam, Sang-Won;Youm, Kyung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.272-277
    • /
    • 2014
  • In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a cross-flow membrane filtration laboratory system. The permeate flux was decreased with the increasing copper ion concentration in sulfuric acid solution and lowering pH of acid solution, and its value was the range of $4.5{\sim}23L/m^2{\cdot}h$. Total rejection of copper ion was decreased with the increasing copper ion concentration, lowering pH of acid solution and decreasing cross-flow rate. The total rejection of copper ion was more than 70% at the experimental condition. The SelRO MPS-34 4040 NF membrane was represented the stable flux and rejection for 1 year operation.

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

Dielectric Characteristics of Alumina by Surface Etching Effects (표면에칭효과에 의한 산화알루미늄 유전체의 정전용량 특성)

  • Oh Han-Jun;Park Chi-Sun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.61-67
    • /
    • 2004
  • The structural, electrical properties of the electrolytic capacitors were examined. By the addition of additives to hydrochloric acid solution increased the dielectric aluminum surface layer. For etch tunnels formed in hydrochloric acid, the away and density of the tunnels was not uniform, while for those formed in hydrochloric acid with additives the distribution presented relative uniformity. When the etched surface formed in hydrochloric acid with $5\%$ ethylene glycol, the enlargement of specific surface area was more effective.

  • PDF

Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (II) : Dead-end Nanofiltration of PCB Etching Waste Solution Containing Copper Ion (나노여과에 의한 중금속 함유 산성 폐에칭액의 재생(II) : 구리이온을 함유한 PCB 폐에칭액의 Dead-end 나노여과)

  • Nam, Sang-Won;Jang, Kyung-Sun;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.92-99
    • /
    • 2013
  • In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a dead-end membrane filtration laboratory system. The pure water flux was increased with the increasing storage time in sulfuric acid solution and lowering pH of acid solution because of the enhancement of NF membrane damage by sulfuric acid. The permeate flux of acid solution was decreased with the increasing copper ion concentration. Total rejection of copper ion was decreased with the increasing storage time in sulfuric acid solution and copper ion concentration, and lowering the pH of acid solution. The total rejection of copper ion was decreased from initial 37% to 15% minimum value.

Recovery of Nickel Metal from the Spent FeCl$_3$ Etching Solution by Solvent Extraction and Chemical Reduction (FeCl$_3$ 에칭廢液으로부터 溶媒抽出과 化學沈澱에 의한 니켈金屬 回收)

  • Lee, Man-Seung;Kim, Myoung-Sik
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.48-54
    • /
    • 2005
  • Solvent extraction and chemical reduction experiments have been performed to separate iron and nickel from a spent FeCl$_3$ etching solution and to recover nickel metal. It was possible to separate iron and nickel by extracting the spent solution with Alamine336. At the O/A ratio of 7:1, iron extraction percentage of 99% was obtained. In the stripping of the loaded organic with 0.01 M HCl solution, iron stripping percentage of 99% was obtained when the A/O ratio was 7:1. When the pH of the raffinate was controlled to be 10.5, nickel metal powder with 99% purity was obtained by using hydrazine as a reducing agent at 100$^{\circ}C$. A process was suggested to recover nickel metal from the spent FeCl$_3$ solution and to regenerate etching solution.

Oxidation Process for the Etching Solution Regeneration of Ferric Chloride Using Liquid and Solid Oxidizing Agent (염화철 에칭 용액 재생을 위한 액상 및 고상 산화제를 이용한 산화공정에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Kim, Geon-Hong;Chae, Byung-man;Lee, Sang-Woo;Choi, Hee-Lack;Jung, Hang-Chul
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.158-162
    • /
    • 2017
  • $FeCl_3$ solution has been used as an etchant for metal etching such as Fe, Cu, Al and Ni. In the etching process, $Fe^{3+}$ is reduced to $Fe^{2+}$ and the etching efficiency is decreased. Waste $FeCl_3$ etchant has environmental, economic problems and thus the regeneration of the etching solution has been required. In this study, HCl was mixed with the $FeCl_2$ solution and then, $H_2O_2$, $NaClO_3$ were added into the mixed solution to oxidize the $Fe^{2+}$. During the oxidation process, oxidation-reduction potential (ORP) was measured and the relationship between ORP and oxidation ratio was investigated. The ORP is increased with increasing the concentration of $H_2O_2$ and $NaClO_3$, and then the ORP is decreased with oxidation progress. Such a behavior was in good agreement with Nernst's equation. Also, the oxidation efficiency was about 99% when a sufficient amount of HCl and $H_2O_2$, $NaClO_3$ were added.

Preparation of Soft Etchant to Improve Adhesion Strength between Photoresist and Copper Layer in Copper Clad Laminates (CCL 표면과 포토리지스트와의 접착력 향상 위한 Soft 에칭액의 제조)

  • Lee, Soo;Moon, Sung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.512-521
    • /
    • 2015
  • In this research, environmental friendly organic acid containing microetching system to improve adhesion strength between photoresist resin and Copper Clad Laminate(CCL) was developed without using strong oxidant $H_2O_2$. Etching rate and surface contamination on CCL were examined with various etching conditions with different etchants, organic acids and additives. to develope an optimum microetching condition. Etching solution with 0.04 M acetic acid showed the highest etching rate $0.4{\mu}m/min$. Etching solution with the higher concentration of APS showed the higher etching rate but surface contamination on CCL is very serious. In addition, stabilizer solution also played an important role to control the surface contamination. As a result of research, the etching solution containing 0.04 M of acetic acid, 0.1 M of APS with 4 g/L of stabilizer solution(ST-1) was best to improve adhesion between CCL and photoresist resin as well as showed the most clean and rough surface with the etching rate of $0.37{\mu}m/min$.

Micro Etching Control System Using Neural Netework toward PCB Manufacturing (Neural Network을 이용한 PCB 공정에서의 Micro Etching 공정 시스템 개발)

  • Ahn, Jong-Hwan;Park, Su-Kung;Lee, Seok-Jun;Kim, Lee-Chul;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.106-107
    • /
    • 2008
  • 과거 PCB 제조 공정의 주된 관심사는 한정된 시간안에 다량의 제품을 생산하기 위한 것에 초점이 맞추어져 있었으나, 최근 중국의 전자산업 시장진출에 따른 PCB 가격 하락 및 원자제 가격 상승으로 인하여 생산 단가를 낮출 수 있는 방법으로 시선을 돌리고 있다. 특히, PCB 제조 공정에서, 생산 가격을 낮출 수 있는 방법중 가장 큰 비중을 차지하고 있는 것은, 습식 에칭 시 사용되는 용액(에칭액)의 사용 양을 제어함으로써, 화학 약품의 구입에 따른 비용 및 사용된 약품을 처리하는 비용을 줄일 수 있는 방법을 찾으려 노력하고 있다. 그러나, 애칭액을 효율적으로 제어하기 위해서는 여러 센서에서 나오는 데이터를 통합하여 진단할 수 있는 시스템이 필요하다. 그러나, 센서에 의한 데이터가 다양함에 제어 알고리듬이 복잡함에 따라 효율적인 제어 시스템이 개발되기 힘들다는 문제점이 있다. 본 논문에서는 이점에 착안하여, 인공지능 알고리듬을 이용한 애칭액 신액 투입조건을 실시간으로 제어 할 수 있는 시스템을 제안한다. 제안된 시스템을 사용하여, 애칭액을 균일하게 유지함에 따라 애칭액의 사용량을 줄일 수 있을 뿐 아니라, 폐액을 일정하게 관리할 수 있음을 확인하였다.

  • PDF