• 제목/요약/키워드: 에이에스비 스푸프

검색결과 1건 처리시간 0.018초

컨시스트: 오디오 딥페이크 탐지를 위한 그래프 어텐션 기반 새로운 모델링 방법론 연구 (CoNSIST: Consist of New Methodologies on AASIST for Audio Deepfake Detection)

  • 하재훈;문주원;이상엽
    • 정보처리학회 논문지
    • /
    • 제13권10호
    • /
    • pp.513-519
    • /
    • 2024
  • 인공지능 기술의 발전과 함께 딥러닝 기반의 오디오 딥페이크 기술이 크게 향상되었고, 이를 악용하여 다양한 범죄 활동이 이루어지고 있다. 오디오 딥페이크를 탐지하여 이러한 피해를 예방하기 위해 본 논문은 새로운 컨시스트(CoNSIST) 모델을 제안한다. 이 모델은 그래프 기반의 모델인 AASIST를 기반으로, 세 가지 추가적인 모델링 방법론을 적용하여 오디오 딥페이크 탐지를 한다. 세 가지 추가적인 모델링을 통해 특징 추출을 강화하고, 불필요한 작업을 제거하며, 다양한 정보를 통합하는 것을 목표로 한다. 최종 실험 결과, 컨시스트가 기존 오디오 딥페이크 탐지 모델들보다 더 우수한 성능을 보여 딥페이크의 악용을 방지하기 위해 더 나은 해결책을 제공한다.