• 제목/요약/키워드: 에이다부스트

검색결과 16건 처리시간 0.025초

얼굴 색상과 에이다부스트를 이용한 효율적인 얼굴 검출 (Efficient Face Detection using Adaboost and Facial Color)

  • 채영남;정지년;양현승
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권7호
    • /
    • pp.548-559
    • /
    • 2009
  • Viola와 Jones가 제안한 에이다부스트 얼굴 검출기는 속도와 정확도면에서 매우 훌륭한 성능을 보이고 있는 얼굴 검출기이다. 하지만 에이다부스트 얼굴 검출기에도 여전히 오검출이 발생하며, 이를 줄이기 위해서는 더욱 많은 계산이 필요하다. 에이다부스트 얼굴 검출기는 흑백 영상만을 사용하므로, 색상정보를 사용하면 더 적은 연산으로 오검출율을 낮출 수 있다. 본 논문은 얼굴 색상 정보를 이용하여 대상 영상에서 부 윈도우를 효율적으로 검색하고, 에이다부스트 얼굴 검출기의 첫 단계에 계산속도가 매우 빠른 얼굴 색상을 이용한 얼굴/비얼굴 분류기를 채용하여 더 빠른 얼굴 검출 속도와 더 낮은 오검출율을 달성할 수 있는 단계별 얼굴 검출 모텔을 제안하였다. 얼굴색상 필터링을 위해 정의된 얼굴색상 소속함수를 이용하여 얼굴색상 필터 영상과 그 누적영상을 계산한다. 누적 영상에 의해 빠른 속도로 임의의 부 윈도우의 밀도를 계산할 수 있다. 제안된 검색 방법은 이 색상 밀도에 기반하여 얼굴일 가능성이 없는 부 윈도우들을 생략하게 된다. 그리고 부 윈도우의 밀도를 이용한 얼굴/비얼굴 분류기는 단계별 얼굴 검출기의 앞단에서 얼굴이 아닌 부 윈도우를 빠르게 거절한다. 제안된 얼굴 검출 모델은 적은 계산으로 오검출율을 낮출 수 있었으며, 실시간 얼굴 검출 속도를 비약적으로 향상시킬 수 있었다.

반복적 부스팅 학습을 이용한 문서 여과 (Text Filtering using Iterative Boosting Algorithms)

  • 한상윤;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권4호
    • /
    • pp.270-277
    • /
    • 2002
  • 문서 여과 문제 (text filtering)는 어떤 문서가 특정한 주제에 속하는지의 여부를 판별하는 문제이다. 인터넷과 웹이 널리 퍼지고 이메일로 전송되는 문서의 양이 폭발적으로 증가함에 따라 문서 여과의 중요성도 따라서 증가하고 있는 추세이다. 이 논문에서는 새로운 학습 방법인 에이다부스트 학습 방법을 문서 여과 문제에 적용하여 기존의 방법들보다 우수한 분류 결과를 나타내는 문서 여과 시스템을 생성하고자 한다. 에이다 부스트는 간단한 가설의 집합을 생성하고 묶는 기법인데, 이 때 각각의 가설들은 문서가 특정 단어를 포함하고 있는지 검사하여 이에 따라 문서의 적합성을 판별한다. 먼저 최종 여과 시스템을 구성하는 각 가설의 출력이 1 또는 -1이 되는 이진 가설을 사용하는 기존의 에이다부스트 알고리즘에서 출발하여 좀 더 최근에 제안된 확신 정도 (실수값)를 출력하는 가설을 이용하는 에이다부스트 알고리즘을 적용함으로써 오류 감소 속도와 최종 오류율을 개선하고자 하였다. 또 각 데이타에 대한 초기 가중치를 연속 포아송 분포에 따라 임의로 부여하여 여러 번의 부스팅을 수행한 후 그 결과를 결합하는 방법을 사용함으로써 적은 학습 데이타로 인해 발생하는 과도학습의 문제를 완화하고자 하였다. 실험 데이터로는 TREC-8 필터링 트랙 데이타셋을 사용하였다. 이 데이타셋은 1992년도부터 1994년도 사이의 파이낸셜 타임스 기사로 이루어져 있다. 실험 결과, 실수값을 출력하는 가설을 사용했을 때 이진값을 갖는 가설을 사용했을 때 보다 좋은 결과를 보였고 임의 가중치를 사용하여 여러번 부스팅을 하는 방법이 더욱 향상된 성능을 나타내었다. 다른 TREC 참가자들과의 비교결과도 제시한다.

에지 분석과 에이다부스트 알고리즘을 이용한 차량검출 (Vehicle Detection Using Edge Analysis and AdaBoost Algorithm)

  • 송광열;이기용;이준웅
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-11
    • /
    • 2009
  • This paper proposes an algorithm capable of detecting vehicles in front or in rear using a monocular camera installed in a vehicle. The vehicle detection has been regarded as an important part of intelligent vehicle technologies. The proposed algorithm is mainly composed of two parts: 1)hypothesis generation of vehicles, and 2)hypothesis verification. The hypotheses of vehicles are generated by the analysis of vertical and horizontal edges and the detection of symmetry axis. The hypothesis verification, which determines vehicles among hypotheses, is done by the AdaBoost algorithm. The proposed algorithm is proven to be effective through experiments performed on various images captured on the roads.

에이다부스트 학습을 이용한 문자 데이터 검출 방법 (A Method of Detecting Character Data through a Adaboost Learning Method)

  • 장석우;변시우
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.655-661
    • /
    • 2017
  • 입력되는 정지 또는 동영상에 포함된 문자 정보는 영상의 내용을 대표하는 주요한 핵심 정보를 제공할 수 있기 때문에 다양한 종류의 영상 데이터를 분석하여 영상 내에 포함된 문자 영역들을 정확하게 추출하는 작업은 매우 중요하다. 본 논문에서는 입력되는 영상으로부터 MCT 특징과 에이다부스트(Adaboost) 알고리즘을 이용하여 문자 영역만을 정확하게 검출하는 새로운 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 입력 영상으로부터 MCT 특징과 에이다부스트 알고리즘을 이용하여 문자의 후보 영역들을 추출한다. 그런 다음, 기하학적인 특징을 활용하여 추출된 문자의 후보 영역들로부터 비 문자 영역들을 제외하고 실제적인 문제 영역들만을 검출한다. 실험 결과에서는 제안된 방법이 입력되는 다양한 영상으로부터 기존의 방법보다 문자 영역들을 2.1% 보다 강인하게 추출한다는 것을 보여준다. 본 논문에서 제안된 문자 영역 검출 방법은 상점의 간판 인식, 자동차의 번호판 인식 등과 같은 멀티미디어 및 영상 처리와 관련된 실제 응용 분야에서 매우 유용하게 활용될 것으로 기대된다.

에이다부스트 알고리즘을 이용한 인체 영역의 강인한 검출 (Robust Detection of Body Areas Using an Adaboost Algorithm)

  • 장석우;변시우
    • 한국산학기술학회논문지
    • /
    • 제17권11호
    • /
    • pp.403-409
    • /
    • 2016
  • 최근 들어, 나체 사진이나 그림과 같은 유해한 영상 콘텐츠가 쉽게 유통 및 보급되고 있는 실정이어서 이런 유해 영상 콘텐츠를 효과적으로 검출하고 필터링하기 위한 연구 방법들이 지속적으로 소개되고 있다. 따라서 본 논문에서는 입력되는 칼라 영상으로부터 영상의 유해성을 나타내는 요소인 사람의 배꼽 영역을 하르-라이크(Haar-like) 특징과 에이다부스트(Adaboost) 알고리즘을 이용하여 강인하게 검출하는 새로운 접근 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 입력 영상으로부터 색상 정보를 이용하여 사람의 유두 영역을 검출하고, 검출된 유두 영역과의 위치 정보를 사용하여 배꼽의 후보 영역을 검출한다. 그런 다음, 하르-라이크 특징과 에이다부스트 알고리즘을 이용한 필터링을 통해 실제 배꼽 영역들만을 검출한다. 실험 결과에서는 제안된 방법이 입력되는 칼라 영상으로부터 배꼽 영역을 기존의 방법보다 1.6% 더 정확하게 추출한다는 것을 보여준다. 본 논문에서 제안된 배꼽 영역 검출 알고리즘은 2 차원이나 3 차원의 유해 콘텐츠 검출 및 필터링과 관련된 여러 가지 응용 분야에서 매우 효과적으로 이용될 것으로 기대된다.

HSI/YCbCr 색상모델과 에이다부스트 알고리즘을 이용한 실시간 교통신호 인식 (Real Time Traffic Signal Recognition Using HSI and YCbCr Color Models and Adaboost Algorithm)

  • 박상훈;이준웅
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.214-224
    • /
    • 2016
  • This paper proposes an algorithm to effectively detect the traffic lights and recognize the traffic signals using a monocular camera mounted on the front windshield glass of a vehicle in day time. The algorithm consists of three main parts. The first part is to generate the candidates of a traffic light. After conversion of RGB color model into HSI and YCbCr color spaces, the regions considered as a traffic light are detected. For these regions, edge processing is applied to extract the borders of the traffic light. The second part is to divide the candidates into traffic lights and non-traffic lights using Haar-like features and Adaboost algorithm. The third part is to recognize the signals of the traffic light using a template matching. Experimental results show that the proposed algorithm successfully detects the traffic lights and recognizes the traffic signals in real time in a variety of environments.

사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘 (Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems)

  • 강현우;백장운;한병길;정윤수
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권7호
    • /
    • pp.408-416
    • /
    • 2017
  • 본 논문에서는 주행 중 사각지역내의 차량을 빠르고 정확하게 실시간으로 검출하는 측후방 차량 검출 알고리즘을 제안한다. 제안 알고리즘은 실시간 처리를 위해 MCT(Modified Census Transformation) 특징벡터를 기반으로 에이다부스트 학습을 통해 생성되는 캐스케이드 분류기를 사용한다. MCT 분류기는 검출윈도우가 작을수록 처리속도가 빠르고, 검출윈도우가 클수록 정확도가 증가한다. 제안 알고리즘은 이러한 특징을 이용하여 검출윈도우가 작은 분류기로 차량후보를 빠르게 생성한 후 보다 큰 사이즈의 검출윈도우를 가지는 분류기로 생성된 차량후보에 대해 정확하게 차량인지 검증한다. 또한, 차량분류기와 바퀴분류기를 동시에 사용하여 사각지역내로 진입하는 차량과 사각지역내의 인접차량을 효과적으로 검출한다.

에이다부스트와 신경망 조합을 이용한 표정인식 (Facial Expression Recognition by Combining Adaboost and Neural Network Algorithms)

  • 홍용희;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.806-813
    • /
    • 2010
  • 표정은 사람의 감정을 표현하는 대표적인 수단이다. 이러한 이유로 표정은 사람의 의도를 컴퓨터에 전하는데 효과적인 방법으로 사용될 수 있다. 본 논문에서는 2D 영상에서 사람의 표정을 보다 빠르고 정확하게 인식하기 위해 Discrete Adaboost 알고리즘과 신경망 알고리즘을 통합하는 방법을 제안한다. 1차로 Adaboost 알고리즘으로 영상에서 얼굴의 위치와 크기를 찾고, 2차로 표정별로 학습된 Adaboost 강분류기를 이용하여 표정별 출력 값을 얻으며, 이를 마지막으로 Adaboost 강분류기 값으로 학습된 신경망 알고리즘의 입력으로 이용하여 최종 표정을 인식한다. 제안하는 방법은 실시간이 보장된 Adaboost 알고리즘의 특성과 정확성을 개선하는 신경망 기반 인식기의 신뢰성을 적절히 활용함으로서 전체 인식기의 실시간성을 확보하면서도 정확성을 향상시킨다. 본 논문에서 구현된 알고리즘은 평온, 행복, 슬픔, 화남, 놀람의 5가지 표정에 대해 평균 86~95%의 정확도로 실시간 인식이 가능하다.

눈 검출을 이용한 얼굴인식 알고리즘에 관한 연구 (Study on Face recognition algorithm using the eye detection)

  • 박병준;김기영;김선집
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.491-496
    • /
    • 2015
  • 클라우드 컴퓨팅은 서버의 추가 구축에 대한 비용절감, 데이터 스토리지 확대에 대한 비용 절감, 컴퓨터 자원에 대한 공유, 새로운 기술의 적용에 대한 편의성 등의 장점을 가지고 있다. 그러나 서비스 모델의 다양성으로 인하여 새로운 보안의 우려사항이 높아지고 있어, 이용자가 서비스를 이용 시 안전한 사용자 인증방법이 요구되고 있다. 이에 본 논문에서는 클라우드 보안 영역 접근시 향상된 에이다부스트 알고리즘을 활용한다. 에이다부스트는 20도 이상 기울어진 얼굴을 인식 못 한다는 단점에도 불구하고, 속도와 신뢰성이 높다는 장점 때문에 많이 사용되고 있다. 제안된 방법을 이용하면, 실험결과에서 보듯 20도 이상 기울어진 얼굴도 인식함을 확인하였다. 연구용으로 이용할 수 있는 FEI Face Database를 이용하여 알고리즘 수행 결과 98%의 성공률을 얻었다. 실패한 2%는 안경을 쓴 사진이나 다른 객체로 인하여 인식이 제대로 안된 경우이다.

영작문 자동채점 시스템 개발에서 학습데이터 부족 문제 해결을 위한 앙상블 기법 적용의 효과 (Effect of Application of Ensemble Method on Machine Learning with Insufficient Training Set in Developing Automated English Essay Scoring System)

  • 이경호;이공주
    • 정보과학회 논문지
    • /
    • 제42권9호
    • /
    • pp.1124-1132
    • /
    • 2015
  • 일반적으로, 교사 학습 알고리즘이 적절히 학습되기 위해서는 레이블의 편향이 없는 충분한 양의 학습데이터가 필요하다. 그러나 영작문 자동채점 시스템 개발을 위한 충분하고 편향되지 않은 학습데이터를 수집하는 것은 어려운 일이다. 또한 영어 작문 평가의 경우, 전체적인 답안 수준에 대한 다면적인 평가가 이루어진다. 적고 편향되기 쉬운 학습데이터와 이를 이용한 여러 평가영역에 대한 학습모델을 생성해야하기 때문에, 이를 위한 적절한 기계학습 알고리즘을 결정하기 어렵다. 본 논문에서는 이러한 문제를 앙상블학습을 통해 완화할 수 있음을 실험에 통해 보이고자 한다. 실제 중, 고등학교 학생들을 대상으로 시행된 단문형 영작문 채점 결과를 학습데이터 개수와 편향성을 조절하여 실험하였다. 학습데이터의 개수 변화와 편향성 변화의 실험 결과, 에이다부스트 알고리즘을 적용한 결과를 투표로 결합한 앙상블 기법이 다른 알고리즘들 보다 전반적으로 더 나은 성능을 나타냄을 실험을 통해 나타내었다.