• 제목/요약/키워드: 에어 나이프

검색결과 11건 처리시간 0.019초

TiN 및 TiAlN이 코팅된 SKD61강의 내산화성 및 Zn 증기반응성 연구

  • 채옥주;양현삼;반재삼;문병권
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.170-170
    • /
    • 2015
  • 아크이온플레이팅(AIP)을 이용하여 SKD61강에 TiN 및 TiAlN을 증착함으로써 내산화성 및 아연증기와의 반응을 억제할 수 있었으며, 도금두께 제어를 위한 에어나이프의 수명개선 및 생산성향상에 매우 중요한 요인으로 판단되었다.

  • PDF

코안다 효과를 이용한 에어 블로어와 흡입구의 유동 제어 (Flow control of air blowing and vacuuming module using Coanda effect)

  • 정우태
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.115-121
    • /
    • 2017
  • 도시철도 터널 내에 축적된 미세먼지(PM10 and PM2.5)의 제거를 위해 사용되는 분진흡입차량은 에어 블로어와 흡입시스템으로 구성된 하부흡입시스템의 설계방법에 따라 성능이 달라진다. 본 논문에서는 터널 집진차량의 하부에 설치된 먼지 흡입시스템의 효율 향상을 위하여 흡입구와 에어 블로어에 코안다 효과를 이용한 유속 조절장치를 적용하여 그 효과를 확인하였다. 특히, 공기 유동에 대한 수치해석을 통하여 진공 흡입구 내에 코안다 효과를 이용한 유속조절장치를 적용하였으며, 유속 조절각이 약 90도 내외일 때 유속의 상승과 더불어 유동의 안정화가 동시에 이루어질 수 있음을 확인하였다. 또한 링 블로어에 의해 동작되는 에어 나이프형 공기 블로어는 양쪽 끝 가장자리에 코안다 효과를 유도할 수 있는 엣지 구조를 삽입함으로써 블로어 양 끝단의 유속 저하를 개선할 수 있음을 확인하였다. 이러한 4개의 통합된 모듈 형식의 흡입 시스템의 설계는 최적화를 통하여 바닥 먼지가 비산됨과 동시에 흡입구로 흡입되어 궤도면에 누적된 미세먼지와 초미세먼지의 제거에 효과적으로 활용될 수 있을 것으로 기대된다.

연속용융도금라인에서 에어나이프 특성이 도금편차에 미치는 영향 (A Study on Coating Deviation Effect by Air Knife Characteristics in CGL)

  • Bae, Y.H.;Ahn, D.S.;Lee, S.H.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.57-68
    • /
    • 1993
  • Air Wiping technique is widely used because of easy and efficient coating control in present CGL. Coaring weight is decided by nozzle header pressure, strip line speed and distance between strip and nozzle. Coating defects are results from unbalance of these factors and coating equipment calibration inaccuracy. Therefore, this study is mainly dealing with the cause of coating defects such as edge overcoating and coating deviation. The coptimum working condition is suggested by formulated coating model using collected working data. We developed two demension analysis program for air flow in nozzle and calculated dynamic pressure and air velocity with this program. The productivity and coating guality are improved by applying the result of this reserach.

  • PDF

용융아연도금라인에서 에어나이프 형상패턴 변경에 의한 단부과도금 진단 (Diagnosis of Edge overcoating by Air Knife Pattern Modification in CGL)

  • 배용환;최홍태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.20-28
    • /
    • 2000
  • Air wiping technique is widely used because of easy and efficient coating control in present CGL The coating weight is controlled by nozzle header pressure. strip line speed, and the distance between strip and nozzle. Coating defects are resulted from the unbalance of these control factors and the inaccuracy of coating equipments. We investigates the main cause of coating defects, such as edge overcoating and coating deviation through various experiments. It is found that the edge overcoating is mainly come from nozzle lip type, and the coating deviation is caused by the unbalance of dynamic pressure.

  • PDF

연속용융아연 도금라인의 도금편차 진단 (Diagnosis of Coating Deviation in Continuous Galvanizing Line)

  • 배용환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.192-199
    • /
    • 2002
  • In continuous galvanizing process, the mass of zinc deposited and its distribution are controlled by the air pressure, effective distance from the air knife nozzle to the steel strip surface and line speed. Coating defects are resulted from the unbalance of these control factors and the inaccuracy of coating equipments. This paper investigates the main cause of coating deviation and a new air knife system for control of coating thickness was developed. We investigate dynamic pressure variation by air knife types. It is found that the coating deviation is caused by the unbalance of dynamic pressure, the irregularity of strip position, and the strip vibration. Formulating a useful coating model by using present working condition, an optimal working condition is suggested. The productivity and coating quality are improved by applying the result of this research at the shop floor.

단부 아연 과도금 방지를 위한 단부 와동 구조의 분석 (Analysis of a Vortex Structure Near the Strip Edge for Preventing Edge Zn Overcoation)

  • 조중원;김상준;안기장;정명균
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1105-1113
    • /
    • 2003
  • In the gas wiping process of continuous hot-dip galvanizing, edge overcoating develops near the edge of the steel strip. The overcoating is supposed to occur due to the reduced impact pressure of wiping gas on the strip surface. The purpose of this study is to investigate the effect of edge vortex on the reduced impact pressure. Three-dimensional unsteady flows are simulated using a commercial code, STAR-CD. Standard k-$\varepsilon$ model is used as a turbulence model. It is found that an alternating vortex structure in the vicinity of strip edge is developed by buckling of opposed jet streams and that the reduced amount of impact pressure at strip edge becomes smaller as the air knife gets closer to the strip. The effect of edge baffle on the reduced impact pressure is also investigated.

연속식 용용아연도금 공정에서의 단부 과도금 현상에 대한 수치 해석 (Analysis of Edge Overcoating in Continuous Hot-Dip Galvanizing)

  • 안기장;김상준;조중원;정명균
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.763-770
    • /
    • 2004
  • The problem of edge overcoating developed near the edge of the steel strip is studied quantitatively in the gas wiping process of continuous hot-dip galvanizing. It has been assumed that the edge overcoating occurs due to the reduced impact pressure of wiping gas on the strip edge and it is one of detrimental problems to the quality of coating products. In order to analyse the edge overcoating problem numerically, three-dimensional unsteady flows due to the gas wiping are calculated by using a commercial code, STAR-CD. Standard $\kappa$-$\varepsilon$ model is used as a turbulence model. The 1D code for calculation of coating thickness is constructed by using continuity and Navier-Stokes equations. The calculation results have shown good agreement with measurements of edge overcoating thickness, taken from galvanizing line trials. Therefore it is conformed that the major cause of edge overcoating is the reduced impact pressure of wiping gas on the strip surface.

팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구 (A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE)

  • 이동원;강남철;김근영;권영두;권순범
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

연속 아연 도금 코-팅 두께에 관한 수치 해석적 연구 (A Numerical Analysis on the Coating Thickness in Continuous Hot-Dip Galvanizing)

  • 이동원;신승영;김병지;권영두;권순범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2955-2960
    • /
    • 2007
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early day that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. And, it is known that the problem of splashing is caused mainly by the existence of separation bubble at the neighbor of the strip surface. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard ${\kappa}-{\varepsilon}$ turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to reduce the size of separation bubble and to enhance the cutting ability at the strip, it is recommendable to use an air knife having the constant expansion rate nozzle.

  • PDF

연속식 용융아연도금 공정에서 단부 과도금 현상을 방지하기 위한 하향 대칭 분류유동 연구 (A Downwardly Deflected Symmetric Jet to prevent Edge Overcoating in Continuous Hot-Dip Galvanizing)

  • 안기장;정명균
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1156-1162
    • /
    • 2005
  • In this study, a noble method is proposed to prevent the edge overcoating (EOC) that may develop near the edge of the steel strip in the gas wiping process of continuous hot-dip galvanizing. In our past study (Trans. of the KSME (B), Vol. 27, No. 8, pp. $1105\~1113$), it was found that EOC is caused by the alternating vortices which are generated by the collision of two opposed jets in the region outside the steel strip. When the two opposed jets collide at an angle much less than $180^{o}$, non-alternating stable vortices are established symmetrically outside the steel strip, which lead to nearly uniform pressure on the strip surface. In order to deflect both jets downward by a certain angle, a cylinder with small diameter is installed tangentially to the exit of the lower lip of the two-dimensional jet. In order to find an optimum cylinder diameter, the three dimensional flow field is analysed numerically by using the commercial code, STAR-CD. And the coating thickness is calculated by using an integral analysis method to solve the boundary layer momentum equation. In order to compare the present noble method with the conventional baffle plate method to prevent the EOC, the flow field with a baffle plate is also calculated. The calculation results show that the tangentially installed cylinder at the bottom lip of the jet exit is more effective than the baffle plate to prevent EOC.