• Title/Summary/Keyword: 에어컨 호스

Search Result 6, Processing Time 0.02 seconds

Performance Characteristics of Super Compact Condenser in Automotive Air Conditioning System with Alternative Refrigerant (대체냉매용 자동차 에어컨에서 고성능 응축기의 성능특성)

  • 한창섭
    • Journal of the KSME
    • /
    • v.33 no.11
    • /
    • pp.942-950
    • /
    • 1993
  • 이 글에서는 자동차용 에어컨의 냉매 규제에 따른 대체냉매의 적용시 에어컨의 성능 변화를 이 론적으로 예측하여 보고, 냉매의 대체에 따른 응축기의 변경에 의한 성능 특성을 실험 결과로 설명하였다. 기존의 응축기(SPC)를 SCC로 교체함으로써 대체냉매를 사용하는 시스템에서 열전 달성능의 향상을 꾀할 수 있었다. 자동차용 에어컨에서 냉매의 교체에 따라 변경이 예상되는 부품으로는 응축기를 비롯하여 증발기, 팽창밸브, 수액기건조제, 압력스위치, 배관호스류, 압축기 압축기오일, 팬모터 등이 될 수 있다. 이러한 요소부품의 변경을 위해 연구개발되어야 할 기술 로는 먼저 운전 및 성능을 고려한 각 부품의 설계기술과 제작기술의 개발이 필요하다. 특히 자 동차의 내구연한의 확장에 따른 에어컨의 내구성 및 신뢰성의 문제는 지속적으로 연구되어야 할 것이다.

  • PDF

Finite Element Analysis for the Swaging Process of an Automotive Air-conditioning Hose Assembly (자동차용 에어컨 호스 조립품의 스웨이징 공정에 대한 유한요소해석)

  • Baek, J.K.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2010
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. The swaging process leads to various stress and strain configurations in the hose, which give a critical effect on the hose performance. In this paper, the deformation characteristics of an air-conditioning hose during the swaging process were analyzed using the nonlinear finite element method. Especially the rubber layers, which are contacted with the metal fittings, were divided with finer mesh density than the reinforcement braids to increase the solution accuracy. The material properties were obtained from experimental data, and the contact conditions were used in consideration of the real manufacturing process.

A Study on the Clamping Force of an Automotive Air-conditioning Hose according to the Friction Coefficient (마찰계수를 고려한 자동차용 에어컨 호스의 체결력에 관한 연구)

  • Baek, Jae-Kwon;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 2011
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. In case that the clamping force is small, the refrigerant gas in the hose can leak locally under the severe operating circumstances. The practical test of clamping force is performed by means of the measurement of separation force. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the clamping force. The contact condition is used in consideration of real manufacturing process, and the material properties for the Mooney-Rivlin model is obtained by the experimental results. The result interpretations are focused on the contact forces, which is displayed graphically with respect to friction coefficient, on the surfaces between the hose and the metal fittings.

Measurement of R-134a Leakage from Vehicle Equipped Mobile Air Conditioning(MAC) System (실차를 이용한 자동차 에어컨 냉매 누출량 평가)

  • Kim, Ji Young;Seo, Chungyoul;Lee, Sangeun;Kim, Jeongsoo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • CFC-12 used in mobile air conditioning(MAC) system has been replaced by R-134a, a type of HFC refrigerant, from 1991 to 1994. R-134a has since been widely used as a refrigerant of a mobile air conditioner. However, it is one of the six main green house gases listed in Kyoto Protocol, which makes it imperative to regulate its emission and develop alternative refrigerants. In this study, the concentration of leaked R-134a was measured using VT(Variable Temperature) shed and Running loss test shed to analyze the level of air conditioner refrigerant leaked in a vehicle. According to the analysis of the concentration of R-134a leaked from a vehicle parked, annual leakage amount of R-134a was in the range of 6.46~13.28 g/yr. The figure was similar with the leakage from the mobile air conditioning system currently used. In a study using the same vehicle model, a vehicle equipped with dual evaporation system had a higher leakage rate of refrigerant than a vehicle with a single evaporation system. It appears that the added fittings and joints of the dual evaporator system led to higher leakage rate. Besides, the analysis of the change in R-134a concentration under various car speed found that more refrigerant leaked under high speed(100km/hr) and but the volume of the wind did not affect to the variation of refrigerant leakage.

Finite Element Analysis of Swaging Process for Manufacturing of Automotive Air-Conditioning Hose (자동차용 에어콘 호스 제조를 위한 스웨이징 공정 유한요소해석)

  • Min, Kyu-Young;Kim, Tae-Beom;Park, Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1102-1106
    • /
    • 2008
  • It's necessary to invent a measure to deal with expected counter results when observing mechanical behaviors under the various operations and it can be done by measuring the stress and deformation characteristics of the Automotive Air-Conditioner Hose, which is a hose made up of a rubber hose, an aluminum sleeve and pipe. In this paper, characteristics of the stress and deformation characteristics of the Automotive Air-Conditioner Hose which plays an important role in circulation of refrigerant of an air conditioner in an automobile are analyzed using the finite element method.

A Study on the Vibration Transmission Property of Automotive Air Conditioning Assembly by Frequency Response Analysis (주파수 응답해석을 이용한 자동차용 에어컨 라인 어셈블리의 진동전달 특성에 관한 연구)

  • Han, Seong-Ryeol;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.48-53
    • /
    • 2013
  • An automotive air conditioning assembly consists of a condenser, a compressor and an evaporator. These major components are connected with rubber hoses and aluminum pipes. Once mounted on the automotive air conditioning assembly, it is exposed to a serious vibration environment for a long time. In some cases, there are vibration cracking on the assembly. In order to solve this vibration problem, several real vibration tests are performed on the assembly of which the lay-out was optimized, in spite of sample production cost and making time. In this study, a frequency response analysis, which is a kind of finite element method of the vibration, was performed to know the characteristic of the vibration transmission on the assembly lay-out. The analysis result indicated the damping performance, which is satisfied with the vibration standard of car maker, in rubber hoses and the whole assembly.