• Title/Summary/Keyword: 에어로솔 분포

Search Result 20, Processing Time 0.054 seconds

Analysis of aerosol and cloud depolarization ratios measured by lidar (구름, 에어로솔의 라이다 계측 편광 소멸도 분석)

  • Park, Chan bong;Lee, Young Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.442-444
    • /
    • 2012
  • Depolarization characteristics of aerosol and cloud measured by dual wavelengths polarization lidar are examined. Ratio of depolarization ratio (RDR) between 1064 and 532nm are analyzed and compared with spherical aerosols and cloud. RDR of dust aerosols is exponentially decreased according to the increase of depolarization ratio at 532nm. The RDR of spherical aerosol is in the range of 1.5~6, dust aerosol is 0.98~4, and cloud is 0.7~1.77. Vertical distribution of dust aerosol and Relative Humidity (RH) are compared. In general, the RH in the dust layer are in the range of 30~60%. However, higher RH is frequently observed in the dust aerosols layer. In the condition of higher RH over 75%, the RDR of the dust aerosol are also increased to the range of 2~4.

  • PDF

Sensitivity Analysis of IR Aerosol Detection Algorithm (적외선 채널을 이용한 에어로솔 탐지의 경계값 및 민감도 분석)

  • Ha, Jong-Sung;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.507-518
    • /
    • 2006
  • The radiation at $11{\mu}m$ absorbed more than at $12{\mu}m$ when aerosols is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The difference of the two channels provides an opportunity to detect aerosols such as Yellow Sand even with the presence of clouds and at night. However problems associated with this approach arise because the difference can be affected by various atmospheric and surface conditions. In this paper, we has analyzed how the threshold and sensitivity of the brightness temperature difference between two channel (BTD) vary with respect to the conditions in detail. The important finding is that the threshold value for the BTD distinguishing between aerosols and cloud is $0.8^{\circ}K$ with the US standard atmosphere, which is greater than the typical value of $0^{\circ}K$. The threshold and sensitivity studies for the BTD show that solar zenith angle, aerosols altitude, surface reflectivity, and atmospheric temperature profile marginally affect the BTD. However, satellite zenith angle, surface temperature along with emissivity, and vertical profile of water vapor are strongly influencing on the BTD, which is as much as of about 50%. These results strongly suggest that the aerosol retrieval with the BTD method must be cautious and the outcomes must be carefully calibrated with respect to the sources of the error.

Size Distribution of Aerosol at Gosan in Jeju-do: March in 2002 (제주도 고산에서의 미세입자의 입경분포 특성 분석)

  • 한진석;문광주;안준영;홍유덕;서충열;김영준;류성윤
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.129-130
    • /
    • 2003
  • 대기중의 유해 에어로솔의 장거리 이동에 대한 과학적인 자료를 마련하기 위해 2002년 8월 27일부터 9월 11일까지 제주도 서쪽 끝에 위치한 고산사이트에서 에어로솔의 샘플링을 수행하였다. 이로부터 제주도 고산지역 대기 중 미세입자의 물리적, 화학적 입경분포 특성 결과를 통한 오염물질의 배출원 추정 및 장거리 이동가능성을 검토하고자 하였다. (중략)

  • PDF

Derivation of Synergistic Aerosol Model by Using the ECMWF/MACC and OPAC (ECMWF/MACC와 OPAC자료를 이용한 시너지 에어로솔 모델 산출)

  • Lee, Kwon-Ho;Lee, Kyu-Tae;Mun, Gwan-Ho;Kim, Jung-ho;Jung, Kyoung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.857-868
    • /
    • 2018
  • The microphysics and spatio-temporal distribution of atmospheric aerosols are responsible for estimating the optical properties at a given location. Its accurate estimation is essential to plan efficient simulation for radiative transfer. For this sake, synergetic use of reanalysis data with optics database was used as a potential tool to precisely derive the aerosol model on the basis of the major representative particulates exist within a model grid. In detail, mixing of aerosol types weighted by aerosol optical depth (AOD) components has been developed. This synergetic aerosol model (SAM) is spectrally extended up to $40{\mu}m$. For the major aerosol event cases, SAM showed that the mixed aerosol particles were totally different from the typical standard aerosol models provided by the radiative transfer model. The correlation among the derived aerosol optical properties along with ground-based observation data has also been compared. The current results will help to improve the radiative transfer model simulation under the real atmospheric environment.

Properties of Particle Size Distribution in Taean (태안지역에서의 에어로솔의 입경분포 특성)

  • 안준영;한진석;김종호;선우영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.143-144
    • /
    • 2002
  • 동아시아지역의 산업발달로 인하여 증가한 대기중의 에어로솔들은 도시지역 시정장애의 주요 요인으로 작용하며 강우의 산도를 증가시켜 토양의 산성화를 야기하고 또한 장거리 이동하여 청정지역의 대기오염농도에 주된 요인으로 작용하고 있다. 동아시아지역의 대표적인 오염물질 장거리 이동현상인 황사는 중국에서 발생한 dust storm이 주변 산업지역의 오염된 공기와 이동, 인접국가의 대기오염농도에 직접적인 영향을 끼치는 현상으로 발생빈도는 년간 3-5회 정도 발생한다. (중략)

  • PDF

Optical Properties of Aerosol at Gongju Estimated by Ground-based Measurements Using Sky-radiometer (스카이라디오미터(Sky-radiometer)로 관측된 공주지역 에어로솔의 광학적 특성)

  • Kwak, Chong-Heum;Suh, Myoung-Seok;Kim, Maeng-Ki;Kwak, Seo-Youn;Lee, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.790-799
    • /
    • 2005
  • We investigate the optical properties of aerosols over Gongju by an indirect method using the pound measurement, Sky-radiometer. The analysis period is from January to December, 2004. Skyrad. pack.3 is used to estimate the optical properties, such as the aerosol optical thickness (AOT), single scattering albedo (SSA), ${\AA}ngstron$ exponent $({\alpha})$ and size distribution, of aerosols from the ground measured radiance data. And qualify control is applied to minimize the cloud-contaminated data and improve the quality of analysis results. The 12-month average of AOT, ${\alpha}$, and SSA are 0.46, 1.14, and 0.91, respectively. The average volume spectra of aerosols shows a bi-modal distribution, the first peak at fine mode and the second peak at coarse mode. AOT and coarse particles clearly increases while SSA decreases during the Asian dust events. The optical properties of aerosols at Gongju vary with?seasons, but those are not influenced by the wind direction.

Examining Influences of Asian dust on SST Retrievals over the East Asian Sea Waters Using NOAA AVHRR Data (NOAA AVHRR 자료를 이용한 해수면온도 산출에 황사가 미치는 영향)

  • Chun, Hyoung-Wook;Sohn, Byung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.45-59
    • /
    • 2009
  • This research presents the effect of Asian dust on the derived sea surface temperature (SST) from measurements of the Advanced Very High Resolution Radiometer (AVHRR) instrument flown onboard NOAA polar orbiting satellites. To analyze the effect, A VHRR infrared brightness temperature (TB) is estimated from simulated radiance calculated from radiative transfer model on various atmospheric conditions. Vertical profiles of temperature, pressure, and humidity from radiosonde observation are used to build up the East Asian atmospheric conditions in spring. Aerosol optical thickness (AOT) and size distribution are derived from skyradiation measurements to be used as inputs to the radiative transfer model. The simulation results show that single channel TB at window region is depressed under the Asian dust condition. The magnitude of depression is about 2K at nadir under moderate aerosol loading, but the magnitude reaches up to 4K at slant path. The dual channel difference (DCD) in spilt window region is also reduced under the Asian dust condition, but the reduction of DCD is much smaller than that shown in single channel TB simulation. Owing to the depression of TB, SST has cold bias. In addition, the effect of AOT on SST is amplified at large satellite zenith angle (SZA), resulting in high variance in derived SSTs. The SST depression due to the presence of Asian dust can be expressed as a linear function of AOT and SZA. On the basis of this relationship, the effect of Asian dust on the SST retrieval from the conventional daytime multi-channel SST algorithm can be derived as a function of AOT and SZA.

The Distribution of Aerosol Concentration during the Asian Dust Period over Busan Area, Korea in Spring 2009 (2009년 봄철 부산지역 황사 기간 중 에어로솔 농도 분포)

  • Jung, Woon-Seon;Park, Sung-Hwa;Lee, Dong-In;Kang, Deok-Du;Kim, Dong-Chul
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.693-710
    • /
    • 2013
  • This study investigates the distribution of suspended particulates during the Asian dust period in Busan, Korea in the spring of 2009. Weather map and automatic weather system (AWS) data were used to analyze the synoptic weather conditions during the period. Particulate matter 10, laser particle counter data, satellite images and a backward trajectories model were used to analyze the aerosol particles distribution and their origins. In Case 1 (20 February 2009), when the $PM_{10}$ concentration increased, the aerosol volume distribution of small ($0.3-1.0{\mu}m$) particles decreased, while the concentration of large ($1.0-10.0{\mu}m$) particles increased. When the $PM_{10}$ concentration decreased, the aerosol volume distribution was observed to decrease as well. The prevailing winds changed from weak northerly winds to strong southwesterly winds when the concentration of the large particles increased. The correlation coefficient between the $PM_{10}$ concentration and aerosol volume distribution of large particles showed a high positive value of over 0.9. The results from the trajectory model show that the Asian dust originated in the Gobi desert and the Nei Mongol plateau. In Case 2 (25 April 2009), when the $PM_{10}$ concentration increased, the aerosol volume concentration of small ($0.3-0.5{\mu}m$) particles decreased, but the concentration of large ($0.5-10.0{\mu}m$) particles increased. The opposite was observed when the $PM_{10}$ concentration decreased. The prevailing winds changed from northeasterly winds to southwesterly and northeasterly winds. The correlation coefficient between the $PM_{10}$ concentration and aerosol volume distribution of large particles ($1.0-10.0{\mu}m$) showed a high positive value of about 0.9. The results from the trajectory model show that the Asian dust originated in Manchuria and the eastern coast of China.