• Title/Summary/Keyword: 에블레이션

Search Result 2, Processing Time 0.016 seconds

The thermal analysis of te-based media for the optical recording (광기록에 이용되는 Te-based media에 대한 열적 해석)

  • 이성준;천석표;이현용;정홍배
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 1995
  • We discussed the thermal analysis for a recording media with the variation of the laser pulse duration, the laser power and the temperature distribution in order to optimize the Te-based antireflection structure from the computer calculations. In the case that the radial heat diffusion is negligible, we can calculate the maximum temperature of the recording layer at the center of the spot by the Simple Model. The temperature profile of the recording layer is obtained from the Numerical Model by considering the total specific heat and the latent heat. As a result, the effect of the heat sinking acting as a thermal loss for the hole formation could be minimized by introducing the pulse with the hole formation duration(.tau.) below the thermal time constant(.tau.$_{D}$) of a dielectric layer. These requirments can be satisfied by using the dielectric thickness of the 2nd ART(Anti-Reflection Trilayer) condition or the dielectric materials with a low thermal diffusivity.y.

  • PDF

A Study on the Structural and Electrical Properties of PLZT Thin Films Prepared by Laser Ablation (레이저 에블레이션법으로 제작된 PLZT 박막의 구조 및 전기적 특성에 관한 연구)

  • Jang, Nak-Won;Mah, Suk-Bum;Paik, Dong-Soo;Choi, Hyung-Wook;Park, Chang-Yub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.866-870
    • /
    • 1998
  • PLZT thin films were fabricated with different Zr/Ti ratios by pulsed laser deposition. PLZT films deposited on Pt/Ti/SiO$_2$/Si substrate. This PLZT thin films of 5000$\AA$ thickness were crystallized at $600^{\circ}C$, $O_2$ pressure 200m Torr. 2/55/45 PLZT thin film showed a maximum dielectric constant value of $\varepsilon$\ulcorner=1550 and dielectric loss was 0.03 at 10kHz. At 2/70/30 PLZT thin film, coercive field and remnant polarization was respectively 19[kV/cm], 8[$\mu$C/$\textrm{cm}^2$]. Raman spectroscopy results showed that the bands of spectra became broader as the amount of Zr mol% increased and two crystal phase coexisted at 2/55/45 PLZT film. Raman spectroscopy was useful for crystal structure analysis of PLZT thin films.

  • PDF