• Title/Summary/Keyword: 에너지 효율적 전송기법

Search Result 392, Processing Time 0.025 seconds

CACH Distributed Clustering Protocol Based on Context-aware (CACH에 의한 상황인식 기반의 분산 클러스터링 기법)

  • Mun, Chang-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1222-1227
    • /
    • 2009
  • In this paper, we proposed a new method, the CACH(Context-aware Clustering Hierarchy) algorithm in Mobile Ad-hoc Network(MANET) systems. The proposed CACH algorithm based on hybrid and clustering protocol that provide the reliable monitoring and control of a variety of environments for remote place. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. The proposed analysis could help in defining the optimum depth of hierarchy architecture CACH utilize. Also, the proposed CACH could be used localized condition to enable adaptation and robustness for dynamic network topology protocol and this provide that our hierarchy to be resilient. As a result, our simulation results would show that a new method for CACH could find energy efficient depth of hierarchy of a cluster.

ICARP: Interference-based Charging Aware Routing Protocol for Opportunistic Energy Harvesting Wireless Networks (ICARP: 기회적 에너지 하베스팅 무선 네트워크를 위한 간섭 기반 충전 인지 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recent researches on radio frequency energy harvesting networks(RF-EHNs) with limited energy resource like battery have been focusing on the development of a new scheme that can effectively extend the whole lifetime of a network to semipermanent. In order for considerable increase both in the amount of energy obtained from radio frequency energy harvesting and its charging effectiveness, it is very important to design a network that supports energy harvesting and data transfer simultaneously with the full consideration of various characteristics affecting the performance of a RF-EHN. In this paper, we proposes an interference-based charging aware routing protocol(ICARP) that utilizes interference information and charging time to maximize the amount of energy harvesting and to minimize the end-to-end delay from a source to the given destination node. To accomplish the research objectives, this paper gives a design of ICARP adopting new network metrics such as interference information and charging time to minimize end-to-end delay in energy harvesting wireless networks. The proposed method enables a RF-EHN to reduce the number of packet losses and retransmissions significantly for better energy consumption. Finally, simulation results show that the network performance in the aspects of packet transmission rate and end-to-end delay has enhanced with the comparison of existing routing protocols.

Adaptive Mobile Sink Path Based Energy Efficient Routing Protocol for Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율을 고려한 모바일 sink의 적응적 경로설정 방법)

  • Kim, Hyun-Duk;Yoon, Yeo-Woong;Choi, Won-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12A
    • /
    • pp.994-1005
    • /
    • 2011
  • In this paper, we propose a novel approach to optimize the movement of mobile sink node, called AMSP(Adaptive Mobile Sink Path) for mobile sensor network environments. Currently available studies usually suffer from unnecessary data transmission resulting from random way point approach. To address the problem, we propose a method which uses the Hilbert curve to create a path. The proposed method guarantees shorten transmission distance between the sink node and each sensor node by assigning orders of the curve according to sensor node density. Furthermore, The schedule of the sink node is informed to all of the sensing nodes so that the Duty Cycle helps the network be more energy efficient. In our experiments, the proposed method outperforms the existing works such as TTDD and CBPER by up to 80% in energy consumption.

A Time Tree Scheduling Scheme for Energy Efficiency and Collision Avoidance in Sensor Networks (센서 네트워크에서 에너지 효율과 충돌 회피를 위한 타임 트리 스케줄링)

  • Lee, Kil-Hung
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.962-970
    • /
    • 2009
  • This paper presents a data gathering and scheduling scheme for wireless sensor networks. We use a data gathering tree for sending the data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, a time tree is built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possible different activation rate. Through the simulation, we found that the proposed scheme that uses time trees shows better characteristics in energy and data arrival rate when compared with other schemes such as SMAC and DMAC.

  • PDF

Fuzzy Logic based Propagation Limiting Method for message routing in Wireless Sensor Networks (무선 센서 네트워크에서 메시지 라우팅을 위한 퍼지로직 기반의 전달 영역 제한 기법)

  • Chi, Sang-Hoon;Cho, Tae-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.8-12
    • /
    • 2005
  • 최근 마이크로 센서와 무선 통신 기술의 진보는 센서 네트워크의 발전을 가능하게 하였다. 이와 같은 사실은 무선 센서 네트워크를 위한 수많은 라우팅 프로토콜의 개발로 이어졌으며, 다양한 구조의 알고리즘들이 제안되었다. 특히, 디렉티드 디퓨젼(Directed Diffusion; DD)은 데이터 중심 기반의 라우팅 알고리즘으로 속성 칼 쌍을 이용하여 통신하는 센서 네트워크의 한 패러다임이라고 할 수 있다. 그러나 기존의 DD에서는 작업을 요청하는 질의 메시지(interest message)가 전체 센서 네트워크에 플러딩(flooding)되는데, 이러한 과정은 에너지 소비 측면에서 볼 때 매우 비효율적이라고 할 수 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 센서 노드의 에너지와 밀도 정보를 고려한 임계값을 이용하여 데이터의 전송 지역을 제한함으로서, 네트워크의 에너지 소비를 줄일 수 있는 새로운 메시지 전달영역 제한기법(propagation limiting method; PLM)을 제안한다. 퍼지 규칙 기반 시스템은 센서 필드에 배치된 노드들의 에너지와 밀도 정보를 입력 파라미터로 사용하여 메시지 라우팅을 위한 임계값 결정에 사용된다 본 연구에서 제안된 기법을 사용하여 센서 네트워크의 에너지 소비를 실험한 결과 기존에 제안되었던 알고리즘들에 비해 상대적으로 높은 효율성을 나타내었으며, 전체적으로 네트워크의 수명도 연장할 수 있었다.

  • PDF

Systematic Network Coding for Computational Efficiency and Energy Efficiency in Wireless Body Area Networks (무선 인체 네트워크에서의 계산 효율과 에너지 효율 향상을 위한 시스테매틱 네트워크 코딩)

  • Kim, Dae-Hyeok;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.823-829
    • /
    • 2011
  • Recently, wireless body area network (WBAN) has received much attention as an application for the ubiquitous healthcare system. In WBAN, each sensor nodes and a personal base station such as PDA have an energy constraint and computation overhead should be minimized due to node's limited computing power and memory constraint. The reliable data transmission also must be guaranteed because it handles vital signals. In this paper, we propose a systematic network coding scheme for WBAN to reduce the network coding overhead as well as total energy consumption for completion the transmission. We model the proposed scheme using Markov chain. To minimize the total energy consumption for completing the data transmission, we made the problem as a minimization problem and find an optimal solution. Our simulation result shows that large amount of energy reduction is achieved by proposed systematic network coding. Also, the proposed scheme reduces the computational overhead of network coding imposed on each node by simplify the decoding process.

An Energy Saying Method using Cluster Cohesion in Sensor Networks (센서 네트워크에서 클러스터 응집도를 이용한 에너지 절약 방안)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.569-575
    • /
    • 2007
  • The main issue of this study is to find ways to lengthen the lifetime of network mainly by reducing energy consumption. This paper proposes how to reduce the amount of data transmitted in each sensor and cluster head in order to lengthen the lifetime of sensor network. The most important factor of reducing the sensor's energy dissipation is to reduce the amount of messages transmitted. This study proposes cluster cohesion for the purposes. The method is to use the cluster cohesion and manage the number of clusters adaptively and reduce the amount of message transmitted in network topology. This method should be much more efficient and effective as it reduces the network traffic significantly and increases the network's lifetime.

  • PDF

Method of Spectrum Sensing and Energy Harvesting in Cognitive Communication Network (인지 통신 네트워크의 스펙트럼 감지 및 전력 수집 방안)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • In this paper, we proposed not specturm sensing but also save energy without consume energy of secondary network that spectrum sensing of cognitive applied energy harvesting scheme. Algorithms of sensing and harvesting is determine active or idle of primary network, compares the amount of energy that is harvested by energy harvesting scheme with the threshold. If secondary network to send a message and primary network is active, by changing frequency to use the spectrum. Further, if secondary network have no message, continues energy harvest. Therefore, spectrum sensing applied energy harvesting scheme, energy of secondary network is remove waste and charge energy, efficiency and utilization of cognitive network can be increase.

A Fast Code Propagation Scheme in Wireless Sensor Networks (무선 센서 네트워크에서 신속한 코드 전송 기법)

  • Lee, Han-Sun;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • Once the sensor node in wireless sensor networks is installed, it usually operates without human intervention for a long time. The remote code update scheme is required because it is difficult to recall the sensor node in many situations. Therefore, studies on the reliable and efficient transport protocol for code propagation in wireless sensor networks have been increasingly done. However, by considering only the stability aspect of transmission, most of previous works ignore the consideration on the fast code propagation. This results the energy inefficiency by consuming unnecessary energy due to the slow code propagation. In this paper, in order to overcome limitation of the previous code propagation protocols, we propose a new code propagation protocol called "FCPP(Fast Code Propagation Protocol)". The FCPP aims at improving the reliability at well as performance. For this purpose, the FCPP accomplishes the fast code propagation by using the RTT-based transmission rate control and NACK suppression scheme, which provides a better the network utilization and avoids a unnecessary transmission delay. Based on the ns-2 simulation result, we prove that the FCPP Improves significantly both reliability and performance.

An Efficient Flooding Algorithm with Adaptive Retransmission Node Selection for Wireless Sensor Networks (무선 센서 네트워크에서의 적응적 재전송 노드 선택에 의한 효율적인 Flooding 알고리즘)

  • Choi, Seung-Joon;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11B
    • /
    • pp.673-684
    • /
    • 2007
  • In this paper, we introduce an FARNS (Flooding algorithm with Adaptive Retransmission Nodes Selection). It is an efficient cross layer-based flooding technique to solve broadcast storm problem that is produced by simple flooding of nodes in wireless sensor network. FARNS can decrease waste of unnecessary energy by preventing retransmission action of whole network node by deciding retransmission candidate nodes that are selected by identification in MAC and distance with neighborhood node through received signal strength information in PHY. In simulation part, we show the results that FARNS has excellent performance than the other flooding schemes in terms of broadcast forwarding ratio, broadcast delivery ratio, number of redundancy packets and overhead. And FARNS can adjust of node ratio for retransmission operation, it can solve broadcast storm problem as well as meet the requirements of various network environments.