• Title/Summary/Keyword: 에너지 플러스

Search Result 69, Processing Time 0.023 seconds

Analysis of the Part Load Ratio Characteristics and Gas Energy Consumption of a Hot Water Boiler in a Residential Building under Korean Climatic Conditions (국내 기상조건하 주거용 건물 가스 보일러의 부분부하 특성과 에너지 사용량 분석)

  • Yu, Byeong Ho;Seo, Byeong-Mo;Moon, Jin-Woo;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.455-462
    • /
    • 2015
  • Residential buildings account for a significant portion of the total building-energy usage in Korea, and a variety of research studies on the domestic boiler have therefore been carried out; however, most of these studies examined the boiler itself, whereby the part-load ratio characteristics and the corresponding gas-energy consumption patterns were not analyzed. In this study, the part-load ratio and operating characteristics of a domestic gas boiler were analyzed within a residential building equipped with a radiant floor-heating system; in addition, the energy consumption between condensing and conventional boilers was comparatively analyzed. Our results show that significant portions of the total operating hours, heating load, and energy consumption are in the part-load ratio range of 0 through 40%, whereby the energy consumption was significantly affected by the boiler efficiency under low part-load conditions. These results indicate that the part-load operation of a boiler is an important factor in residential buildings; furthermore, replacing a conventional boiler with a condensing boiler can reduce annual gas-energy usage by more than 20%.

A Study on the Application of Simulation-based Simplified PMV Regression Model for Indoor Thermal Comfort Control (실내 온열환경 쾌적 제어를 위한 단순 PMV 회귀모델의 적용에 관한 시뮬레이션 연구)

  • Kim, Sang-Hun;Yun, Sung-Jun;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2015
  • The PMV regression analysis was conducted for this model based on a database of the PMV variables. PMV regression model simplification was completed through sensitivity and data analysis. The simplified PMV regression model's and Fanger PMV model was confirmed through MAE and RMSE. And the EMS in EnergyPlus was used to establish a simplified PMV regression analysis-based thermal comfort control. Also, the thermal comfort controls based on simplified PMV model and the Fanger PMV model were applied to the building model, it was confirmed that both controls met the thermal comfort range in more than 90% of cases during the air conditioning period.

Case Analysis for Introduction of Machine Learning Technology to the Mining Industry (머신러닝 기술의 광업 분야 도입을 위한 활용사례 분석)

  • Lee, Chaeyoung;Kim, Sung-Min;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study investigated use cases of machine learning technology in domestic medical, manufacturing, finance, automobile, urban sectors and those in overseas mining industry. Through a literature survey, it was found that the machine learning technology has been widely utilized for developing medical image information system, real-time monitoring and fault diagnosis system, security level of information system, autonomous vehicle and integrated city management system. Until now, the use cases have not found in the domestic mining industry, however, several overseas projects have found that introduce the machine learning technology to the mining industry for improving the productivity and safety of mineral exploration or mine development. In the future, the introduction of the machine learning technology to the mining industry is expected to spread gradually.

A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus (EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구)

  • Kim, Tae Ho;Ko, Sung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.

Heating and Cooling Load of Building according to Atrium Layout

  • Jeong, Nam-Young;Lee, Ji-Young;Chae, Young Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Purpose: The purpose of this study is to present basic data which would be applied on the early stage of the architectural design. And that determines the introduction of the atrium by comparing and analysing the environmental performance of atrium building. Method: The building forms are classified into low storied building, middle storied building and high storied building. This study compares and analyses energy performance of the standard building without atrium and the atrium building which has one-side, two-side, three-side, four-side, and linear atrium by measuring of annual heating and cooling load with EnergyPlus. Result: As a result of the analysis of the relative annual heating and cooling load by building type, it is shown that the fluctuation of cooling load in low storied building is large because heat storage in atrium affects building, and the fluctuation of heating load in high storied building is large owing to the effect of external wall area of atrium which makes heat loss. Especially, it indicated the largest annual heating and cooling load in four-side atrium of low storied building, and in one-side atrium of high storied building.

Development and comparative analysis of slat angle control algorithm of venetian blind according to window-to-wall ratio and zone orientation (창면적비 및 향변화에 따른 슬랫형 블라인드의 최적각도 제어 알고리즘 산출 및 비교분석)

  • Kwon, Hyuk-Ju;Lee, Keum-Ho;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.75-81
    • /
    • 2017
  • Purpose: Most contemporary office buildings supply external views, a sense of openness and a sense of time to their occupants by adopting the curtain walls, which are equipped with an outer cover having large window area. As a result, the amount of radiation increases, adversely affecting cooling load during the summer in office buildings. Although solar radiation decreases heating load and reduces energy costs during the winter period, due to the characteristics of offices where occupants work largely during daytime, the cooling load is important compared to the heating. Therefore, diverse measures to resolve those trade-offs and annual energy cost have been investigated. Method: In this study, the annual thermal load was comparatively analyzed according to the slat angle of the venetian blind along with lighting control technique. Result: After selecting effective conditions, in order to resolve such issues, this study established automated control strategies of slat angle depending on the window-to-wall ratio and zone orientation, so that the findings of this study can be effectively generalized to other circumstances.

A Study on Solar Radiation Analysis and Saving Elements of Heating Load according to the Location and Type of Housing in Multi-family Apartments (공동주택 주동형태별 세대위치에 따른 일사분석 및 난방부하 절감요소에 관한 연구)

  • Kim, Soo-Jeong;Park, Doo-Yong;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • This study aims to evaluate the correlation between vertical solar radiation and the level of heating load according to the location and type of housing in multi-family apartments. This study shows that heating load is related with factors such as wall loss, window loss, ventilation loss and solar radiation gain. The heating load increases in the order of the middle floors, the highest floors and the lowest floors. The lowest and the highest floors are the most vulnerable floors, and it should be as emphasized as the middle floors. The heating load saving proposal contains 52 Alt. that shows heating load savings from min. 4% to max. 49%. The goal is to reduce the heating load of the highest and the lowest floors to the level of the middle floors. The result showed that there are 3 Alt. for the lowest floors and 16 Alt. for the highest floors as the heating load saving proposal. This study suggests integrated application to compose saving elements of heating load. so it could be utilized as a data for the construction of passive houses.

A Study on Change in Window Transmitted Solar and the Resultant Wall Surface Convective Heat Gain with Regard to Slat Reflectance of External and Internal Blinds (실내·외 블라인드의 Slat 반사율에 따라 창호 일사투과량 및 그에 따른 벽체 대류열획득량 분석)

  • Hyun, In-Tak;Lee, Jae-Ho;Yoon, Yeo-Beom;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.565-571
    • /
    • 2014
  • Nowadays, to make buildings light weight and aesthetically pleasing, curtain wall structure are commonly used. Therefore, window to wall ratio is increasing, which has caused cooling and heating load in crease in buildings as well. This phenomenon has negative impact from energy point of view. This paper analyzes window and wall convective heat gain when the slat reflectance of external and internal blinds are changed for the better understanding of the fundamentals behind the phenomena. It was observed that, if slat reflectance is increased, window transmitted solar increases and convection heat rate is clearly affected. Among six surfaces including four walls, ceiling and floor, maximum convection heat rate occurs on the south wall in summer. On the other hand, ceiling and floor showed the lowest convection heat gain, since they are shared by adjacent floors.

Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities (소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가)

  • Lee, Jaeho;Hyun, Intak;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

A Study on Evaluation of Natural Ventilation Rate and Thermal Comfort during the Intermediate Season considering by Window Layout and Open Window Ratio (학교 교실의 창호 배치 및 개방면적비에 따른 중간기 자연환기량 및 쾌적성 평가에 관한 연구)

  • Kim, Yeo-Jin;Choi, Jeong-Min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.207-214
    • /
    • 2019
  • Natural ventilation through openings such as windows in school buildings is an efficient resource for natural cooling during the intermediate season of the year. Because the natural ventilation uses the wind outside the building, the amount of ventilation will depend not only on the wind speed and wind direction but also on the window layout and open window ratio. Therefore, in this study, the natural ventilation plans of school classroom windows are divided into 4 types and 8 cases as shown in Table 1. The characteristics of cooling effect by natural ventilation are simulated by applying Energyplus's Airflow Network Model and the comfort of the occupants is evaluated by the number of hours included in the 80% acceptability range of the ASHRAE Standard 55-2010 adaptive comfort model for the weekdays (Monday-Friday) and the class hours (08: 00-19: 00). Based on the analysis results of the above, this study presents basic data related to classroom cooling plan using intermediate season natural ventilation.