• Title/Summary/Keyword: 에너지 플러스

Search Result 69, Processing Time 0.028 seconds

Development of a Renewable Energy Facility Design and Its Simulation Case Study (신재생에너지 설비 설계방안 개발 및 시뮬레이션 사례 연구)

  • Shin, Younggy;Kim, Eun Joo;Kim, Tae Hyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.464-470
    • /
    • 2013
  • Economic feasibility was conducted regarding the regulation that dictates obligatory installation of renewable energy facilities in small proportion. A concern is how to allocate the capacities of candidate facilities (solar collectors, PV cells and geothermal heat pumps) with minimum cost, and meet the obligatory energy supply proportion. A design rule has been developed, with which a designer can tune his or her design strategy between installation cost and LCC. This was derived mainly from documents regarding the KEMCO installation guide. It was concluded that PV was the cheapest, with respect to installation cost, but a geothermal heat pump was the most recommended, when LCC was also taken into account. The proposed design result was also confirmed, by simulation results obtained from Energy Plus.

Simulation on Energy Consumption in the Summer Season Operation of primary HVAC system for Multipurpose Building Complex (다목적 복합건물의 하절기 열원기기 운전시 소비전력에 관한 시뮬레이션)

  • Suh, Jae-Kyoung;Choi, Seung-Gil;Kang, Chae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.903-908
    • /
    • 2006
  • Building energy simulation has become a useful tool for predicting cooling, heating and air-conditioning loads for facilities. It is important to provide building energy performances feed back to the mechanical and electrical system operator and engineer for energy conservation and maintenance of building. From this research, we set up the typical weather data of location, basic description of building, geometric modelling data and the specification of Installed primary HVAC system for establishing the simulation model about energy consuming that take place in multipurpose building complex. The simulation tool of building energy - EnergyPlus (DOE and BLAST based simulation S/W), it has been used and accomplished calculations and analyses for evaluating the effect of the system types and operating condition of central HVAC plant on the building energy consumption. In this paper, we offer comparison and simultaneous results those involve electricity consumption pattern and amount between actual operation versus EnergyPlus simulation to the object building during summer season.

  • PDF

An Analysis of Energy Consumption Types Considering Life Patterns of Single-person Households (1인 가구 거주자의 생활패턴이 고려된 에너지소요량 유형 분석)

  • Lee, Seunghui;Jung, Sungwon;Lim, Ki-Taek
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • The energy of the building is influenced by the user 's activity due to the population, society, and economic characteristics of the building user. In order to obtain accurate energy information, the difference in the amount of energy consumption by the activities and characteristics of building users should be identified. The purpose of the study is to identify the difference in the amount of energy consumption by the user's activities in the same building, and to analyse the relationship between user's activities and demographic, social and economic characteristics. For research, energy simulation is performed based on actual user activity schedule. The results of the simulation were clustered by using K-Means clustering, a machine learning technique. As a result, four types of users were derived based on the amount of energy consumption. The more energy used in a cluster, the lower the user's income level and older. The longer a user's indoor activity times, the higher the energy use, and these activities relate to the user's characteristics. There is more than twice the difference between the group that uses the least energy consumption and the group that uses the most energy consumption.

Nationwide Reduction of Primary Energy and Greenhouse Gas Emission by PMV Control Considering Individual Metabolic Rate Variations in Apartments (아파트 건물에서 재실자 활동량이 고려된 PMV제어에 따른 연간 국가 차원의 1차 에너지 및 온실가스 감축량 분석)

  • Hong, Sung-Hyup;Do, Sung-Lok;Lee, Kwang Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.37-44
    • /
    • 2018
  • In this study, the effects of considering hourly metabolic rate variations for predicted mean vote (PMV) control on the heating and cooling energy and greenhouse gas emission were investigated. The case adopting PMV control taking the hourly metabolic rate into account was comparatively analyzed against the conventional dry-bulb air temperature control, using a detailed simulation technique. Under the assumption that all the apartments in Korea adopt the PMV control incorporating real-time metabolic rate measurements, nationwide reductions of primary energy and greenhouse gas emission were analyzed. As a result, PMV control considering hourly metabolic rate variations is expected to reduce national primary energy by 6.2% compared to conventional dry-bulb air temperature control, corresponding to reduction of 10,342 GWh. In addition, it turned out that 6.6% of tCO2 emission can be reduced by adopting PMV control, corresponding to nationwide reduction of greenhouse gas emission by approximately 1,720,000 tCO2.

Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building (군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가)

  • Byonghu Sohn;Kyung Joo Cho;Dong Woo Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

A Study on the Energy Efficiency Improvement according to Operation Condition of Solar Thermal System in Office Buildings (사무소 건물의 태양열 시스템 운영조건 변화에 따른 에너지 효율 향상에 관한)

  • Jung, Young-Ju;Kim, Seok-Hyun;Lee, Yong-Ho;Hwang, Jung-Ha;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.109-115
    • /
    • 2014
  • The supply rate of renewable energy has been increasing under the influence of an energy scarcity. Government has supported the use of renewable energy by government subsidies. The operation of renewable may not been operating appropriately, although increasing the use of renewable energy. We found out some problems of the operation of renewable energy and offered some improvements. This research proposes the efficient operation method for the solar thermal system, and proposed operation method was compared and evaluated with existing operation strategy after selecting one building installed solar thermal system. Recently, the interest to renewable energy has increased because of the environmental issues and energy crisis. However the utilization of the renewable energy system is low because of the use of renewable energy system and existing renewable energy system independently, although supply rate of renewable system is increasing. Especially, in the case of solar thermal system heating load is not responsible for the load of hot water supply in many cases. Therefore, suggesting efficient operation plans and evaluations of the energy consumption and efficiency of a solar thermal system is needed.

Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation (시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교)

  • Sohn, Byonghu;Lim, Hyojae;Kang, Seongjae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

A Detailed Analysis of the Part Load Ratio and Cooling Energy Characteristics of Chiller Operation in an Office Building (사무소 건물에서 냉동기의 부분부하율 및 냉방 에너지 성능 특성 분석)

  • Seo, Byeong-Mo;Yu, Byeong-Ho;Lee, Kwang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.567-573
    • /
    • 2015
  • Commercial buildings account for significant portions of the total building energy in Korea, and thus, a variety of research on chiller operation has been carried out. However, most of the studies were carried out on the chiller itself, i.e., the part load ratio characteristics and the corresponding electricity energy consumption patterns were not analyzed in existing studies. In this study, the part load ratio and the operating characteristics of the vapor compression chiller were analyzed within an office building equipped with the conventional variable air volume system. As a result, significant portions of total operating hours, cooling load, and energy consumption turned out to be in the part load ratio range of 0 through 50%. Thus, energy consumption was significantly affected by the chiller COP at low part load conditions, indicating that chiller operation at the part load is an important factor in commercial buildings.

Detailed Analysis on Operation Characteristics and Cooling Energy Saving Effect of Chiller Staging in an Office Building (사무소 건물에서 냉동기의 대수제어를 통한 냉동기 거동 특성 및 에너지 절감 효과 분석)

  • Seo, Byeong-Mo;Son, Jeong-Eun;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.137-144
    • /
    • 2016
  • Commercial buildings account for a significant proportion of the total building energy use in Korea, and cooling energy, in turn, accounts for the largest proportion of total energy consumption in commercial buildings. Under this circumstance, chiller staging is considered to be a reasonable and practical solution for cooling energy saving. In this study, the part-load ratio and the operating characteristics of a vapor compression chiller were analysed within an office building. In addition, energy consumption among different chiller staging schemes was comparatively analysed. As a result, significant proportions of total operating hours, cooling load and energy consumption turned out to be in the part load ratio range from 0% through 50%, and thus energy consumption was significantly affected by the chiller COP at low part-load conditions, indicating that the chiller operation at the part-load is an important factor in commercial buildings. In addition, utilizing a sequential chiller staging scheme can reduce the annual cooling energy usage by more than 10.3% compared to operating a single chiller.

Optimized slat angle control algorithm prediction of venetian blind depending on window orientation for energy saving (건물에너지 저감을 위한 향별 슬랫형 블라인드의 최적각도 제어 알고리즘 산출)

  • Kwon, Hyuk-Ju;Lee, Keum-Ho;Lee, Kwang
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Purpose: Most modern office buildings adopt the curtain wall system in order to provide occupants with the sense of openness and high-technology, which requires large window area. As a result, the amount of solar radiation increases, negatively affecting cooling load during the summer and increasing energy costs. However, the performance of window itself is not sufficiently controllable parameter to control thermal comfort and solar radiation. Therefore, a shading device such as venetian blind is required to control them and thus a variety of studies have been performed thus far. So, the purpose of this study is to improve the performance of blind through the development of blind control algorithm. Method: Among various input variables for the control of venetian blinds, the vertical solar radiation has been selected in this study as the primary input variable and the optimal control algorithm for venetian blinds were developed for each window orientation. Result: The developed optimal control algorithm has a positive effect on building energy savings.