• Title/Summary/Keyword: 에너지 포집

Search Result 239, Processing Time 0.02 seconds

A Study on the Regeneration Energy Reduction through the Process Improvement of the Carbon Dioxide Capture Process (상전이 현상을 이용한 이산화탄소 포집공정개선 및 재생에너지 절감에 대한 연구)

  • Kim, Yu-Mi;Kim, Dong-Sun;Cho, Jung-Ho
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.221-225
    • /
    • 2012
  • In this study, simulation works for a carbon dioxide capture process using solvent absorption method have been performed for decrease of regeneration energy in applying phase transition of liquid solvent. When carbon dioxide is dissolved in 30 wt% MEA solvent, liquid mixture divided into two phase according to mole loading of dissolved carbon dioxide. Using this phenomenon, we can decrease regeneration energy about 61% than primary absorber column-stripper column process.

Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process (폭기공정의 물질전달 계수와 기체 포집율 및 소요동력의 상관관계에 대한 비교연구)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.415-421
    • /
    • 2017
  • As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ${\pm}10.0%$.

The Effect of Borax Solution on the Reduction of Fine Particles in Flue Gas at a Commercial Circulating Fluidized-bed Boiler Firing Bituminous Coal (순환 유동층 보일러에서 석탄 연소 시 Borax Solution이 연소 배가스중 미세먼지 저감에 미치는 영향)

  • Park, Jae Hyeok;Lee, Dong-Ho;Bae, Dal-Hee;Choi, Yu Jin;Ryu, Hwan-Woo;Kim, Ji-Bong;Han, Keun Hee;Shun, Dowon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.492-500
    • /
    • 2019
  • In this study, the effect of chemical additives on the reduction of fine particles was identified in $9.2MW_e$ commercial scale circulating fluidized bed boiler firing bituminous coal. Futhermore, a simple and effective method of fine particle collection has been developed to collect the fine particles of the boiler during fossil fuel combustion. Chemical additives were used to reduce particles below 10 PM in the flue gas, and borax solution was used as a chemical additive. In order to identify the particle behavior of PM 10 or less among the collected fine particles, it was analyzed through particle size analyzer and SEM analysis. The Borax solution tends to absorb molten mineral in the flue gas and make fine particles grow. As a result, it was analyzed that particles smaller than $10{\mu}m$ were reduced by using borax solution.

Consideration of Carbon dioxide Capture and Geological Storage (CCS) as Clean Development Mechanism (CDM) Project Activities: Key Issues Related with Geological Storage and Response Strategies (이산화탄소 포집 및 지중저장(CCS) 기술의 청정개발체제(CDM)로의 수용 여부에 대한 정책적 고찰: 지중저장과 관련된 이슈 및 대응방안)

  • Huh, Cheol;Kang, Seong-Gil;Ju, Hyun-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • Carbon dioxide Capture and Storage (CCS) is one of the key players in greenhouse gas (GHG) reduction portfolio for mitigating climate change. CCS makes simultaneously it possible not only to reduce a huge amount of carbon dioxide directly from the emission sources (e.g., coal power plant) but also to maintain the carbon concentrated-energy and/or industry infrastructure. Internationally, the United Nations Framework Convention on Climate Change (UNFCCC) is dealing the agenda for considering the possibility of including CCS project as one of Clean Development Mechanism (CDM) projects. Despite its usefulness, however, there are the controversies in including CCS as the CDM project, whose issues include i) non-permanence, including long-term permanence, ii) measuring, reporting and verification (MRV), iii) environmental impacts, iv) project activity boundaries, v) international law, vi) liability, vii) the potential for perverse outcomes, viii) safety, and ix) insurance coverage and compensation for damages caused due to seepage or leakage. In this paper, those issues in considering CCS as CDM are summarized and analyzed in order to suggest some considerations to policy makers in realizing the CCS project in Korea in the future.

A Hybrid Dust Collector(Hi-Filter) for Reducing Dust Load (먼지부하 저감형 하이브리드 여과집진장치(Hi-filter))

  • 최호경;박석주;임정환;김상도;박현설;박영옥
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.223-226
    • /
    • 2002
  • 본 연구에서는 전기집진 기술과 여과집진 기술의 조합에 의한 먼지입자의 포집성능 상승효과를 최대한 높일 수 있는 먼지부하 저감형 하이브리드 집진장치(Hi-Filter)를 개발하기 위해 실험실 규모의 장치를 이용한 실험을 통하여 장치의 최적 형상을 결정하고 그 성능을 검증하였다.(중략)

  • PDF

Modeling of Waste Tire Gasification in an Internally Circulating Fluidized Bed (내부순환유동층 반응기에서의 폐타이어 가스화 모델링)

  • 이승엽;김용전;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.75-79
    • /
    • 1999
  • 순환유동층은 주탑에서 비말 동반된 입자를 cyclone과 같은 입자 포집장치에서 회수하여 다시 주탑으로 재 주입함으로써 입자의 순환이 일어나는 외부 순환계와 종래의 유동층내에 원형관(Draft tube)이나 평판을 설치하여 두개의 층으로 분리한 후 가스 분산판 위의 간격을 통해 입자들을 두 구역 사이로 강제 순환시키는 내부순환계로 분류할 수 있다. 드래프트 관을 갖는 내부순환유동층 반응기는 기체와 고체의 적절한 접촉을 통해 반응이 이루어지는 반응기 형태이다.(중략)

  • PDF

Effects of particle size and density on solid recycle characteristics of Loop-seal in a Circulating Fluidized Bed (순환유동층내 Loop-seal 에서의 고체재순환에 대한 입자크기 및 밀도의 영향)

  • 김성원;안정렬;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.31-34
    • /
    • 1999
  • 기-고체간의 접촉효율이 높고, 층 내 전체에 걸쳐서 균일한 기-고의 접촉을 갖는 등 많은 장점이 있어 석탄연소로, 촉매반응기와 같은 여러 기-고 반응기에 적용이 확대되고 있는 순환유동층은 높은 유속에서 조업되므로 상승관내 고체입자들은 즉시 비산하게 된다. 따라서, 원활한 반응에 필요한 상승관내 적절한 고체체류량 유지를 위해 고체입자들 대부분은 싸이클론에서 포집 되어 고체재순환부에 의하여 상승관내로 재주입 된다.(중략)

  • PDF

Hydrodynamic Study in the Cold CFB Reactor with 3-Cyclones (3개의 사이클론 갖는 순환유동층에서의 수력학적 특성 연구)

  • 이종민;김재성;김종진
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.57-60
    • /
    • 1999
  • 순환유동층 보일러는 연소로 (상승관: riser)내에 공기를 고속으로 주입하여 비말동반되는 고체입자를 사이클론에서 포집 하여 재주입하는 유동층을 이르는 것으로, 난류유동층(turbulent fluidized bed), 고속유동층(fast fluidized bed) 그리고 희박상 유동(dilute phase flow) 영역에서 조업이 이루어진다. 순환유동층은 비교적 높은 기체 유속에서 조업이 이루어지기 때문에 고체입자의 혼합 및 비산 그리고 재순환이 격렬하게 이루어지고, 기-고체간 접촉효율 및 전열계수가 높아 전체적인 처리량 및 효율이 좋은 장점을 가지고 있다.(중략)

  • PDF

Test Bed Studies with Highly Efficient Amine CO2 Solvent (KoSol-4) (고효율 습식 아민 CO2 흡수제(KoSol-4)를 적용한 Test bed 성능시험)

  • Lee, Ji Hyun;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Jang, Se Gyu;Lee, Kyung Ja;Han, Gwang Su;Oh, Dong-Hun;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.267-271
    • /
    • 2013
  • Test bed studies with highly efficient amine $CO_2$ solvent (KoSol-4) developed by KEPCO research institute were performed. For the first time in Korea, evaluation of post-combustion $CO_2$ capture technology to capture 2 ton $CO_2$/day from a slipstream of the flue gas from a coal-fired power station was performed. Also the analysis of solvent regeneration energy was conducted to suggest the reliable performance data of the KoSol-4 solvent. For this purpose, we have tested 5 campaigns changing the operating conditions of the solvent flow rate and the stripper pressure. The overall results of these campaigns showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate: 90%) suggested by IEA-GHG and that the regeneration energy of the KoSol-4 showed about 3.0~3.2 GJ/$tCO_2$ which was, compared to that of the commercial solvent MEA (Monoethanolamine), about 25% reduction of regeneration energy. Based on these results, we could confirm the good performance of the KoSol-4 solvent and the $CO_2$ capture process developed by KEPCO research institute. And also it was expected that the cost of $CO_2$ avoided could be reduced drastically if the KoSol-4 is applied to the commercial scale $CO_2$ capture plant.