• Title/Summary/Keyword: 에너지 절감형 서버 클러스터

Search Result 4, Processing Time 0.02 seconds

A Flexible Multi-Threshold Based Control of Server Power Mode for Handling Rapidly Changing Loads in an Energy Aware Server Cluster (에너지 절감형 서버 클러스터에서 급변하는 부하 처리를 위한 유연한 다중 임계치 기반의 서버 전원 모드 제어)

  • Ahn, Taejune;Cho, Sungchoul;Kim, Seokkoo;Chun, Kyongho;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.279-292
    • /
    • 2014
  • Energy aware server cluster aims to reduce power consumption at maximum while keeping QoS(quality of service) as much as energy non-aware server cluster. In the existing methods of energy aware server cluster, they calculate the minimum number of active servers needed to handle current user requests and control server power mode in a fixed time interval to make only the needed servers ON. When loads change rapidly, QoS of the existing methods become degraded because they cannot increase the number of active servers so quickly. To solve this QoS problem, we classify load change situations into five types of rapid growth, growth, normal, decline, and rapid decline, and apply five different thresholds respectively in calculating the number of active servers. Also, we use a flexible scheme to adjust the above classification criterion for multi threshold, considering not only load change but also the remaining capacity of servers to handle user requests. We performed experiments with a cluster of 15 servers. A special benchmarking tool called SPECweb was used to generate load patterns with rapid change. Experimental results showed that QoS of the proposed method is improved up to the level of energy non-aware server cluster and power consumption is reduced up to about 50 percent, depending on the load pattern.

An Energy Efficient Cluster Management Method based on Autonomous Learning in a Server Cluster Environment (서버 클러스터 환경에서 자율학습기반의 에너지 효율적인 클러스터 관리 기법)

  • Cho, Sungchul;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.185-196
    • /
    • 2015
  • Energy aware server clusters aim to reduce power consumption at maximum while keeping QoS(Quality of Service) compared to energy non-aware server clusters. They adjust the power mode of each server in a fixed or variable time interval to let only the minimum number of servers needed to handle current user requests ON. Previous studies on energy aware server cluster put efforts to reduce power consumption further or to keep QoS, but they do not consider energy efficiency well. In this paper, we propose an energy efficient cluster management based on autonomous learning for energy aware server clusters. Using parameters optimized through autonomous learning, our method adjusts server power mode to achieve maximum performance with respect to power consumption. Our method repeats the following procedure for adjusting the power modes of servers. Firstly, according to the current load and traffic pattern, it classifies current workload pattern type in a predetermined way. Secondly, it searches learning table to check whether learning has been performed for the classified workload pattern type in the past. If yes, it uses the already-stored parameters. Otherwise, it performs learning for the classified workload pattern type to find the best parameters in terms of energy efficiency and stores the optimized parameters. Thirdly, it adjusts server power mode with the parameters. We implemented the proposed method and performed experiments with a cluster of 16 servers using three different kinds of load patterns. Experimental results show that the proposed method is better than the existing methods in terms of energy efficiency: the numbers of good response per unit power consumed in the proposed method are 99.8%, 107.5% and 141.8% of those in the existing static method, 102.0%, 107.0% and 106.8% of those in the existing prediction method for banking load pattern, real load pattern, and virtual load pattern, respectively.

Performance Improvement of an Energy Efficient Cluster Management Based on Autonomous Learning (자율학습기반의 에너지 효율적인 클러스터 관리에서의 성능 개선)

  • Cho, Sungchul;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.11
    • /
    • pp.369-382
    • /
    • 2015
  • Energy aware server clusters aim to reduce power consumption at maximum while keeping QoS(quality of service) compared to energy non-aware server clusters. They adjust the power mode of each server in a fixed or variable time interval to activate only the minimum number of servers needed to handle current user requests. Previous studies on energy aware server cluster put efforts to reduce power consumption or heat dissipation, but they do not consider energy efficiency well. In this paper, we propose an energy efficient cluster management method to improve not only performance per watt but also QoS of the existing server power mode control method based on autonomous learning. Our proposed method is to adjust server power mode based on a hybrid approach of autonomous learning method with multi level thresholds and power consumption prediction method. Autonomous learning method with multi level thresholds is applied under normal load situation whereas power consumption prediction method is applied under abnormal load situation. The decision on whether current load is normal or abnormal depends on the ratio of the number of current user requests over the average number of user requests during recent past few minutes. Also, a dynamic shutdown method is additionally applied to shorten the time delay to make servers off. We performed experiments with a cluster of 16 servers using three different kinds of load patterns. The multi-threshold based learning method with prediction and dynamic shutdown shows the best result in terms of normalized QoS and performance per watt (valid responses). For banking load pattern, real load pattern, and virtual load pattern, the numbers of good response per watt in the proposed method increase by 1.66%, 2.9% and 3.84%, respectively, whereas QoS in the proposed method increase by 0.45%, 1.33% and 8.82%, respectively, compared to those in the existing autonomous learning method with single level threshold.

Prediction of Power Consumption for Improving QoS in an Energy Saving Server Cluster Environment (에너지 절감형 서버 클러스터 환경에서 QoS 향상을 위한 소비 전력 예측)

  • Cho, Sungchoul;Kang, Sanha;Moon, Hungsik;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2015
  • In an energy saving server cluster environment, the power modes of servers are controlled according to load situation, that is, by making ON only minimum number of servers needed to handle current load while making the other servers OFF. This algorithm works well under normal circumstances, but does not guarantee QoS under abnormal circumstances such as sharply rising or falling loads. This is because the number of ON servers cannot be increased immediately due to the time delay for servers to turn ON from OFF. In this paper, we propose a new prediction algorithm of the power consumption for improving QoS under not only normal but also abnormal circumstances. The proposed prediction algorithm consists of two parts: prediction based on the conventional time series analysis and prediction adjustment based on trend analysis. We performed experiments using 15 PCs and compared performance for 4 types of conventional time series based prediction methods and their modified methods with our prediction algorithm. Experimental results show that Exponential Smoothing with Trend Adjusted (ESTA) and its modified ESTA (MESTA) proposed in this paper are outperforming among 4 types of prediction methods in terms of normalized QoS and number of good reponses per power consumed, and QoS of MESTA proposed in this paper is 7.5% and 3.3% better than that of conventional ESTA for artificial load pattern and real load pattern, respectively.