• Title/Summary/Keyword: 에너지 수급

Search Result 653, Processing Time 0.022 seconds

Estimation of Biomass Resource Conversion Factor and Potential Production in Agricultural Sector (농업부문 바이오매스 자원 환산계수 및 잠재발생량 산정)

  • Park, Woo-Kyun;Park, Noh-Back;Shin, Joung-Du;Hong, Seung-Gil;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.252-260
    • /
    • 2011
  • BACKGROUND: Currently, national biomass inventory are being established for efficient management of the potential energy sources. Among the various types of biomass, agricultural wastes are considered to take the biggest portion of the total annual biomass generated in Korea, implying its importance. However, the currently estimated amount is not reliable because the old reference data are still used to estimate total annual amount of agricultural wastes. METHODS AND RESULTS: Therefore, to provide reliable estimation data, a correct conversion factor obtained by taking into account the current situation is required. For this, the current study was conducted to provide the conversion factors for each representative 8 crop through a field cultivation study. Also conversion factors for 18 crops were calculated using the average amount of each crop produced during 2004 and 2008, subsequently; total amount of agricultural wastes generated in 2009 was estimated using these conversion factors. The total biomass of rice straw and rice husk generated in 2009 were 6.5 and 1.1 million tons, respectively, which consist 75% of the total agricultural based wastes, while the total biomass of pepper shoots and apple pruning twigs were 1.0 and 0.6 million tons, respectively. Despite the high amount of rice-based biomass, their applicability for bio-energy production is low due to conventional utilization of these materials for animal feeds and beds for animal husbandry. In addition to exact estimation of the total biomass, temporal variations in both generated amount and the type of agricultural biomass materials are also important for efficient utilization; fruit pruning twigs (January to March); barley-, been-, and mustard-related waste materials (April to June); rice-related waste (September to October). CONCLUSION(s): Such information provided in this study can be used to establish a master plan for efficient utilization of the agricultural wastes on purpose of bio-energy production.

Effects of Nutrition Education on Improvement of Blood Glucose in Type 2 Diabetic Patients with Low Income (저소득층 당뇨병 환자의 영양교육을 통한 혈당개선 효과)

  • Lim, Eun-Jin;Kim, Mi Jeong;Han, Ji-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.141-150
    • /
    • 2014
  • This study was carried out to investigate the effects of nutrition education on blood glucose in type 2 diabetic patients with low income. There were 50 (27 male and 23 female) study subjects with type 2 diabetes under national medical support, and the monthly income in most of them was less than 500,000 won. Anthropometric measurement, biochemical blood indices, food intake, dietary habits, and nutrition knowledge of the subjects were investigated before nutrition education. Nutrition education was conducted 6 times within 12 weeks. After nutrition education, the glycosylated hemoglobin was significantly decreased (male: $8.4{\pm}1.6%$ to $8.0{\pm}1.7%$, female: $8.3{\pm}1.6%$ to $8.0{\pm}1.3%$) and the total cholesterol was also significantly decreased in both groups. The group of female resulted in a significant decrease in fasting blood glucose ($169.7{\pm}28.2$ mg/dL to $152.8{\pm}22.0$ mg/dL) and triglyceride ($177.8{\pm}56.3$ mg/dL to $162.3{\pm}36.1$ mg/dL), but the group of male did not show a significant decrease in fasting blood glucose and triglyceride. Nutritional knowledge and dietary habit scores of the subjects were significantly improved after nutrition education. The results demonstrate that nutrition education for type 2 diabetic patients with low income are effective in improving their blood glucose.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.