• Title/Summary/Keyword: 에너지효율성

Search Result 3,532, Processing Time 0.024 seconds

The Correction Factor of Sensitivity in Gamma Camera - Based on Whole Body Bone Scan Image - (감마카메라의 Sensitivity 보정 Factor에 관한 연구 - 전신 뼈 영상을 중심으로 -)

  • Jung, Eun-Mi;Jung, Woo-Young;Ryu, Jae-Kwang;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2008
  • Purpose: Generally a whole body bone scan has been known as one of the most frequently executed exams in the nuclear medicine fields. Asan medical center, usually use various gamma camera systems - manufactured by PHILIPS (PRECEDENCE, BRIGHTVIEW), SIEMENS (ECAM, ECAM signature, ECAM plus, SYMBIA T2), GE (INFINIA) - to execute whole body scan. But, as we know, each camera's sensitivity is not same so it is hard to consistent diagnosis of patients. So our purpose is when we execute whole body bone scans, we exclude uncontrollable factors and try to correct controllable factors such as inherent sensitivity of gamma camera. In this study, we're going to measure each gamma camera's sensitivity and study about reasonable correction factors of whole body bone scan to follow up patient's condition using different gamma cameras. Materials and Methods: We used the $^{99m}Tc$ flood phantom, it recommend by IAEA recommendation based on general counts rate of a whole body scan and measured counts rates by the use of various gamma cameras - PRECEDENCE, BRIGHTVIEW, ECAM, ECAM signature, ECAM plus, IFINIA - in Asan medical center nuclear medicine department. For measuring sensitivity, all gamma camera equipped LEHR collimator (Low Energy High Resolution multi parallel Collimator) and the $^{99m}Tc$ gamma spectrum was adjusted around 15% window level, the photo peak was set to 140-kev and acquirded for 60 sec and 120 sec in all gamma cameras. In order to verify whether can apply calculated correction factors to whole body bone scan or not, we actually conducted the whole body bone scan to 27 patients and we compared it analyzed that results. Results: After experimenting using $^{99m}Tc$ flood phantom, sensitivity of ECAM plus was highest and other sensitivity order of all gamma camera is ECAM signature, SYMBIA T2, ECAM, BRIGHTVIEW, IFINIA, PRECEDENCE. And yield sensitivity correction factor show each gamma camera's relative sensitivity ratio by yielded based on ECAM's sensitivity. (ECAM plus 1.07, ECAM signature 1.05, SYMBIA T2 1.03, ECAM 1.00, BRIGHTVIEW 0.90, INFINIA 0.83, PRECEDENCE 0.72) When analyzing the correction factor yielded by $^{99m}Tc$ experiment and another correction factor yielded by whole body bone scan, it shows statistically insignificant value (p<0.05) in whole body bone scan diagnosis. Conclusion: In diagnosing the bone metastasis of patients undergoing cancer, whole body bone scan has been conducted as follow up tests due to its good points (high sensitivity, non invasive, easily conducted). But as a follow up study, it's hard to perform whole body bone scan continuously using same gamma camera. If we use same gamma camera to patients, we have to consider effectiveness of equipment's change by time elapsed. So we expect that applying sensitivity correction factor to patients who tested whole body bone scan regularly will add consistence in diagnosis of patients.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF