• Title/Summary/Keyword: 에너지분산분광법

Search Result 56, Processing Time 0.019 seconds

Electrochemical Characteristics of Electrode by Various Preparation Methods for Alkaline Membrane Fuel Cell (알칼리막 연료전지용 전극의 제조방법에 따른 전기화학적 특성 분석)

  • Yuk, Eunsung;Lee, Hyejin;Jung, Namgee;Shin, Dongwon;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.106-112
    • /
    • 2021
  • Catalyst poisoning by ionomers in membrane electrode assemblies of alkaline membrane fuel cells has been reported recently. We tried to improve the membrane electrode assembly's performance by controlling the solvent's ratio during electrode manufacturing. 4 Different mixing ratios of N-Methyl-2-pyrrolidone (NMP) and ethylene glycol (EG) gave four different cathode electrodes with platinum and Fuma-Tech ionomers. The electrode with higher EG improved polarization performance by about 36% compared to the NMP-based commercial ionomer. The dependence of the ionomer's dispersibility on the solvent seems responsible for the difference, which means that the non-uniform distribution of ionomers improves the performance of the electrode. High-frequency resistance, internal resistance corrected polarization curve, Tafel slope, mass activity, and impedance spectroscopy characterized the electrode. We can find that the existence of poor solvent improves cathode electrode performance. It seems to be the result of reduced poisoning of the catalyst according to the particle size distribution of the ionomer.

Friction Welding of Ni-Base ODS Alloy Prepared by Mechanical Alloying (기계적 합금법으로 제조된 Ni기 산화물 분산강화 합금의 마찰압접에 관한 연구)

  • 강지훈;박성계;김지순;권영순
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.10b
    • /
    • pp.15-15
    • /
    • 1994
  • M MA ODS 합금의 보다 폭넓용 실용확훌 위해 크게 요구되고 있는 적정 접합기술 개발의 한 방안£로, 마찰압접(Friction Welding) 방법의 가능성옳 조사하기 위하여 마찰압력과 시간, 마 찰 후 접촉압력(Upset Pressure) 풍을 다양하게 변화시켜 접합체톨 제조한 후, 접합체 강도에 대한 인장시험과 접합계연의 결합 및 미세구조에 대한 현미경 관찰, EDS에 의한 원소분석, 접 합이옴부의 경도분포와 파단면 분석 풍율 행하였다. 실험에 사용된 모재는 기계적 합금법으로 제조된 Inca사의 Ni기 MA 754 합금이었으며, 직경 l 10 mm, 길이 50 mm로 가공한 후, 아세통£로 초음파 세척하여 접합에 사용하였다. 접합온 브 레이크식 마찰압접기틀 사용하여 행하였으며, 회전시험편의 회전수는 2400 rpm이었A며, 다른 한쪽의 고정시험편과의 마찰압력 및 마찰시간온 각각 50 - 500 MPa과 1-5초로, 또한 업셋압 력도 50 - 600 MPa로 변화시켰다. 이때 업셋압력은 모든 시편에 대해 일정하게 6초동안 가하 였다. 얻어진 접합체는 각 압접조건 당 2개 이상의 접합시험편에 대해 상온 인장강도톨 측정하 였으며, 파단이 일어난 위치를 확인한 후 파면에 대한 분석율 주사전자현미경(SEM)과 에너지 분산형 분광분석기mDS)릎 사용하여 행하였다. 컵합이옴부의 첩합성올 확인하기 위하여, 접합 체를 접합변에 수직으로 절단, 연마한 후 광학현미경과 SEM, EDS 퉁으로 관찰, 분석하여 접 합부의 형상과 결합형성 여부, 접합계면의 미세조직 퉁옳 조사하였다. 또한 마찰압접에 따론 모재와 접합계연부의 경도분포훌 접합이옴부로부터 모재쪽으로 일정 간격율 두어 마이크로 비 커스 경도기로 측정, 조사하였다. 이상의 설험 결과, 다옴과 같온 결론옳 얻었다. ( (1) 접합체 강도가 모채 강도의 95% 이상이 되는 양호한 렵합체흩 얻기 위한 마찰압력 조건 온, 2400 rpm의 회전속도와 6초의 업셋압력 유지시간에서 마찰압력과 업셋압력, 그리고 마찰시 간이 각각 400 MPa 이상과 500 MPa 이상,2초입율 확인하였다. ( (2) 컵합이옴부의 관찰 결과, 모든 마찰압접 조건에서 컵합이옴부는, 기폰 모재의 texture 조직 을 유지하고 있는 모재부 영역(영역 ill)과 첩합계면부에 인접하여 업셋압력이 주어질 때 단조 효과에 의해 계연 외부로 metal flow가 일어나면서 형성된 영역 II, 매우 미세한 결정립으로 구성된 중앙부의 영역 1 로 이투어져 있옴융 확인하였다. ( (3) 최적접합조건이 충족되지 않온 경우, 접합부의 영역 I 에서 관찰된 void와 균열, 불균일한 접합계면 통의 접합결함에 Al과 Y. Ti 퉁£로 구성된 산화물률이 용집되어 있옴을 확인하였 다-( (4) 접합체의 파단 양상온 크게 접합부 파단과 모재부 파단, 이률의 혼합형 파단i로 나눌수 있었다. 모재부 파단의 경우, 파단면이 매끄럽고 파변상의 결정립도 매우 미세하였으며, 산확물 의 용집도 찾아보기 어려웠 나, 접합부 파단의 경우에는 파변의 굴곡이 비교척 심하고 연성 입계파괴의 형태를 보였£며, 결정립도 모채부 파단의 경우에 비해 조대하였다. 조대하였다.

  • PDF

Effect of deposition pressure on the morphology of TiO2 nanoparticles deposited on Al2O3 powders by pulsed laser deposition (펄스레이저 증착법에 의한 Al2O3 입자 표면 위 TiO2 나노입자의 코팅)

  • Choi, Bong Geun;Kim, So Yeon;Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.167-172
    • /
    • 2013
  • Titanium dioxides nanoparticles coated aluminum oxide powders were fabricated by pulsed laser deposition (PLD) with Nd : YAG laser at 266 nm. The Pulse laser energy is 100 mJ/pulse. During the irradiation of the focused laser on the $TiO_2$ target, Ar gas is supplied into the chamber. The gas pressure is varied in a range of $1{\times}10^{-2}$ to 100 Pa. Titanium dioxides nanoparticles deposited aluminum oxide powders were characterized by using energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HR-TEM), in order to understand the effect of Ar background gas on surface morphology and properties of the powders. The coated $TiO_2$ nanoparticles had nanosized spherical shape and the crystallite sizes of 10~30 nm. The morphology of coated $TiO_2$ nanoparticles is not affected by gas pressure. However, the particle size and crystallinity slightly increased with the increase of gas pressure. According to this technique, the size and crystallinity of nanoparticles can be easily controlled by controlling pressure during the laser irradiation.

A Non-enzymatic Hydrogen Peroxide Sensor Based on CuO Nanoparticles/polyaniline on Flexible CNT Fiber Electrode (CuO Nanoparticles/polyaniline/CNT fiber 유연 전극 기반의 H2O2 검출용 비효소적 전기화학 센서)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.196-201
    • /
    • 2023
  • In this study, a CNT fiber flexible electrode grafted with CuO nanoparticles (CuO NPs) and polyaniline (PANI) was developed and applied to a nonenzymatic electrochemical sensor for H2O2 detection. CuO NPs/PANI/CNT fiber electrode was fabricated through the synthesis and deposition of PANI and CuO NPs on the CNT fiber surface using an electrochemical method. Surface morphology and elemental composition of the CuO NPs/PANI/CNT fiber electrode were characterized by scanning electron microscope with energy dispersive X-ray spectrometry. And its electrochemical characteristics were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). Compared with a bare CNT fiber as a control group, the CuO NPs/PANI/CNT fiber electrode showed a 4.78-fold increase in effective surface area and a 8.33-fold decrease in electron transfer resistance, which leads to excellent electrochemical properties such as a good electrical conductivity and an efficient electron transfer. These improved characteristics were due to the synergistic effect through the grafting of CNT fiber, PANI and CuO NPs. As a result, this electrode enhanced the H2O2 sensing performance.

ARPES Study of Quasi-Two Dimensional CDW System CeTe2 (준이차원 전하밀도파 CeTe2의 각분해 광전자 분광 연구)

  • Kim, D.H.;Lee, H.J.;Kang, J.S.;Kim, H.D.;Min, B.H.;Kwon, Y.S.;Kim, J.W.;Min, B.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.173-177
    • /
    • 2010
  • The electronic structure of charge-density-wave (CDW) system $CeTe_2$ has been investigated by using angle-resolved photoemission spectroscopy (ARPES). The clearly dispersive band structures are observed in the measured ARPES spectra, indicating the good quality of the single-crystalline sample employed in this study. The four-fold symmetric patterns are observed in the constant energy (CE) mappings, indicating the $2{\times}2$ lattice deformation in the Te(1) sheets. The observed CE images are similar to those of $LaTe_2$, suggesting that Ce 4f states have the minor contribution to the CDW formation in $CeTe_2$. This study reveals that the carriers near the Fermi level should have mainly the Te(1) 5p and Ce 5d character, that the Te(1) 5p bands contribute to the CDW formation, and that the Ce 5d bands cross the Fermi level even in the CDW state.

Hydrogen Production from Splitting of Methanol/Water Solution Using Perovskite Structured NbxSrTi1-xO3 Photocatalyts (Perovskite NbxSrTi1-xO3 광 촉매를 이용한 메탄올/물 분해로부터 수소제조)

  • Kim, Dongjin;Han, Gi Bo;Park, No-Kuk;Lee, Tae Jin;Kang, Misook
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.513-517
    • /
    • 2013
  • This study focused on the synthesis of $Nb_xSrTi_{1-x}O_3$ photocatalysts which partially inserted Nb ions with excellent ability of fluorescence into the perovskite structured $SrTiO_3$ frameworks and their photocatalytic hydrogen productions from methanol/water splitting corresponding to the molar ratios of Ti and Nb. The characteristics of the synthesized $SrTiO_3$ and $Nb_xSrTi_{1-x}O_3$ powders were analyzed by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), and UV-Visible spectrometer. The hydrogen evolution from methanol/water photo-splitting was enhanced over $Nb_{0.05}SrTi_{0.95}O_3$ compared to those over $SrTiO_3$ and another $Nb_xSrTi_{1-x}O_3$; 4.9 mL of hydrogen gases was collected after 8 h when 0.5g of $Nb_{0.05}SrTi_{0.95}O_3$ catalyst was used in pH 10.

Hexagonal shape Si crystal grown by mixed-source HVPE method (혼합소스 HVPE 방법에 의해 성장된 육각형 Si 결정)

  • Lee, Gang Seok;Kim, Kyoung Hwa;Park, Jung Hyun;Kim, So Yoon;Lee, Ha Young;Ahn, Hyung Soo;Lee, Jae Hak;Chun, Young Tea;Yang, Min;Yi, Sam Nyung;Jeon, Injun;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.103-111
    • /
    • 2021
  • Hexagonal shape Si crystals were grown by the mixed-source hydride vapor phase epitaxy (HVPE) method of mixing solid materials such as Si, Al and Ga. In the newly designed atmospheric pressure mixed-source HVPE method, nuclei are formed by the interaction between GaCln, AlCln and SiCln gases at a high temperature of 1200℃. In addition, it is designed to generate a precursor gas with a high partial pressure due to the rapid reaction of Si and HCl gas. The properties of hexagonal Si crystals were investigated through scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution X-ray diffraction (HR-XRD), and Raman spectrum. From these results, it is expected to be applied as a new material in the Si industry.

Analysis of High-Temperature Corrosion of Heat Exchanger Tubes in Biomass Circulating Fluidized Bed Boiler (바이오매스 순환유동층 보일러의 열교환기 고온 부식 특성)

  • Yujin Choi;Dal-hee Bae;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.419-425
    • /
    • 2023
  • This paper presents the research results of analyzing the high-temperature corrosion characteristics of three currently commercialized heat exchanger tube materials under actual operating conditions of a biomass power plant. In order to precisely analyze the high-temperature corrosion characteristics of these materials, a high-temperature corrosion evaluation device was installed in the power plant equipment, which allows for adjusting the surface temperature of the heat exchanger tubes. Experiments were conducted for approximately 300 hours under various temperature and operating conditions. In this study, the commercialized heat exchanger tube materials used were SA213T12, SA213T22, and SA213T91 alloys. In order to objectively analyze the high-temperature corrosion characteristics of each material, an international standard-based process to remove corrosion products was applied to obtain the weight change of the specimens, and the average thickness loss and corrosion rate were derived. Thus, the high-temperature corrosion results for each condition were quantitatively compared and analyzed. In addition, in order to increase the reliability of the high-temperature corrosion evaluation method introduced in this study, the surface and cross-sectional corrosion of the specimens were confirmed by using scanning electron microscopy and energy-dispersive X-ray analysis. Based on these analysis results, it was found that the corrosion resistance of the commercial heat exchanger materials increases as the content of chrome and nickel in the composition increases. Additionally, it was found that the corrosion phenomenon is rapidly accelerated as the surface temperature increases. Finally, the replacement period (lifetime) of the heat exchanger tubes under each condition could be inferred through this study.

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC) (방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성)

  • Kim, Sang Kyum;Park, Ji Yun;Hwang, Sun Choel;Lee, Do Kyun;Lee, Sang Heon;Rhee, Young Woo;Han, Moon Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.