• Title/Summary/Keyword: 엇갈린 관군

Search Result 6, Processing Time 0.03 seconds

A Study on the Fluid Flow and Heat Transfer Around a Staggered Tube Bundles Using a Low-Reynolds $k-\epsilon$ Turbulence Model (저레이놀즈수 $k-\epsilon$ 난류모델을 사용한 엇갈린 관군 주위에서의 유동 및 열전달에 관한 연구)

  • 김형수;최영기;유홍선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.212-218
    • /
    • 1995
  • Turbulent flow and heat transfer characteristics around staggered tube bundles were studied using a non-orthogonal boundary fitted coordinate system and the low Reynolds .kappa. - .epsilon. turbulence model suggested by Lam and Bremhorst. The predicted flow characteristics for two tube pitches and tube arrangement showed good agreement with the experimental data except the strongly curved region. The predicted Nusselt number was compared with measurements obtained in the staggered rough bundles and it revealed the similar trend to measurements, but the location of the maximum and minimum heat transfer differed somewhat from the measurements.

Measurement of Flow Field through a Staggered Tube Bundle using Particle Image Velocimetry (PIV기법에 의한 엇갈린 관군 배열 내부의 유동장 측정)

  • 김경천;최득관;박재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.595-601
    • /
    • 2001
  • We applied PIV method to obtain instantaneous and ensemble averaged velocity fields from the first row to the fifth row of a staggered tube bundle. The Reynolds number based on the tube diameter and the maximum velocity was set to be 4,000. Remarkably different natures are observed in the developing bundle flow. Such differences are depicted in the mean recirculating bubble length and the vorticity distributions. The jet-like flow seems to be a dominant feature after the second row and usually skew. However, the ensemble averaged fields show symmetric profiles and the flow characteristics between the third and fourth measuring planes are not so different. comparison between the PIV data and the RANS simulation yields severe disagreement in spite of the same Reynolds number. It can be explained that the distinct jet-like unsteady motions are not to be accounted in th steady numerical analysis.

  • PDF

A Study on Heat Transfer and Pressure Drop Characteristics of Staggered Tube Banks using CFD Analysis (CFD해석을 통한 엇갈린형 관군의 열전달 및 압력강하 특성에 관한 연구)

  • Zhao, Liu;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2985-2992
    • /
    • 2015
  • In this study, the characteristics of heat transfer and pressure drop was theoretically analyzed by changing longitudinal pitch, bump phase, location of vortex generator about the staggered tube banks by applying SST (Shear Stress Transport) turbulence model of ANSYS FLUENT v.14. Before carrying out CFD (Computational Fluid Dynamics) analysis, It is presumed that the boundary condition is the tube surface temperature of 363 K, the inlet air temperature of 313 K and the inlet air velocity of 5-10 m/s. The results indicated that the heat transfer coefficient is not affected by the longitudinal pitch and the bump phase of circle type was more appropriate than serrated type in the characteristics of heat transfer and pressure drop. Additionally, in case of vortex generator location, the heat transfer characteristics showed that forward location of tube was more favorable 4.6% than backward location.

An Experimental Study on Heat Storage and Heat Recovery Characteristics of a Latent Heat Storage Tank with Horizontal Shell and Tube Type (수평식 셸-튜브형 잠열축열조의 축열 및 방열특성에 관한 실험적 연구)

  • Kwon, Young-Man;Seo, Hye-Sung;Moh, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.50-59
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat exchanger consisted of horizontal cylindrical capsules with a staggered tube bank layout. Based on the obtained data, the effects of flow rate and inlet fluid temperature on the melting time and heat storage rates were examined. It is found that the melting time decreased with increase of the flow rate and the inlet temperature. Results also show that at the initial stage of heat transfer the heat storage rate represents the maximum value and rapidly decreases.

A Study on the Heat Storage Characteristics of a Latent Heat Storage Tank with Shell and Tube Type (셀-튜브형 잠열축열조의 축열특성에 관한 연구)

  • 권영만;김경우;모정하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.745-754
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat storage tank consists of cylindrical capsules with a staggered tube bank. The effects of flow rates and initial temperature differences on the melting time and heat storage rates are examined. It is found that the melting time decreases with increase of the flow rates and initial temperature differences. Results also show that the time-averaged overall heat transfer coefficients increase in proportion to the increase of flow rates and initial temperature differences.

  • PDF

The Numerical Simulation of Flow Field and Heat Transfer around 3-D Tube Banks (3차원 튜브 뱅크 주위의 난류 유동장 및 열전달에 대한 수치 해석적 연구)

  • Park, S.K.;Kim, K.W.;Ryou, H.S.;Choi, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.375-385
    • /
    • 1996
  • Turbulent flow and heat transfer characteristics around staggered tube banks were studied using the 3-D Navier-Stokes equations and energy equation governing a steady incompressible flow, which were reformulated in a non-orthogonal coordinate system with cartesian velocity components and discretized by the finite volume method with a non-staggered variable arrangement. The predicted turbulent kinetic energy using RNG $k-{\varepsilon}$ model was lower than that of standard $k-{\varepsilon}$ model but showed same result for mean flow field quantities. The prediction of the skin friction coefficient using RNG $k-{\varepsilon}$ model showed better trend with experimental data than standard $k-{\varepsilon}$ model result. The inclined flow showed higher velocity and skin friction coefficient than transverse flow because of extra strain rate ($\frac{{\partial}w}{{\partial}y}$). Also, this was why the inclined flow showed higher local heat transfer coefficient than the transverse flow.

  • PDF