• Title/Summary/Keyword: 업셋 압력

Search Result 17, Processing Time 0.028 seconds

Friction Welding of Ni-Base ODS Alloy Prepared by Mechanical Alloying (기계적 합금법으로 제조된 Ni기 산화물 분산강화 합금의 마찰압접에 관한 연구)

  • 강지훈;박성계;김지순;권영순
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.10b
    • /
    • pp.15-15
    • /
    • 1994
  • M MA ODS 합금의 보다 폭넓용 실용확훌 위해 크게 요구되고 있는 적정 접합기술 개발의 한 방안£로, 마찰압접(Friction Welding) 방법의 가능성옳 조사하기 위하여 마찰압력과 시간, 마 찰 후 접촉압력(Upset Pressure) 풍을 다양하게 변화시켜 접합체톨 제조한 후, 접합체 강도에 대한 인장시험과 접합계연의 결합 및 미세구조에 대한 현미경 관찰, EDS에 의한 원소분석, 접 합이옴부의 경도분포와 파단면 분석 풍율 행하였다. 실험에 사용된 모재는 기계적 합금법으로 제조된 Inca사의 Ni기 MA 754 합금이었으며, 직경 l 10 mm, 길이 50 mm로 가공한 후, 아세통£로 초음파 세척하여 접합에 사용하였다. 접합온 브 레이크식 마찰압접기틀 사용하여 행하였으며, 회전시험편의 회전수는 2400 rpm이었A며, 다른 한쪽의 고정시험편과의 마찰압력 및 마찰시간온 각각 50 - 500 MPa과 1-5초로, 또한 업셋압 력도 50 - 600 MPa로 변화시켰다. 이때 업셋압력은 모든 시편에 대해 일정하게 6초동안 가하 였다. 얻어진 접합체는 각 압접조건 당 2개 이상의 접합시험편에 대해 상온 인장강도톨 측정하 였으며, 파단이 일어난 위치를 확인한 후 파면에 대한 분석율 주사전자현미경(SEM)과 에너지 분산형 분광분석기mDS)릎 사용하여 행하였다. 컵합이옴부의 첩합성올 확인하기 위하여, 접합 체를 접합변에 수직으로 절단, 연마한 후 광학현미경과 SEM, EDS 퉁으로 관찰, 분석하여 접 합부의 형상과 결합형성 여부, 접합계면의 미세조직 퉁옳 조사하였다. 또한 마찰압접에 따론 모재와 접합계연부의 경도분포훌 접합이옴부로부터 모재쪽으로 일정 간격율 두어 마이크로 비 커스 경도기로 측정, 조사하였다. 이상의 설험 결과, 다옴과 같온 결론옳 얻었다. ( (1) 접합체 강도가 모채 강도의 95% 이상이 되는 양호한 렵합체흩 얻기 위한 마찰압력 조건 온, 2400 rpm의 회전속도와 6초의 업셋압력 유지시간에서 마찰압력과 업셋압력, 그리고 마찰시 간이 각각 400 MPa 이상과 500 MPa 이상,2초입율 확인하였다. ( (2) 컵합이옴부의 관찰 결과, 모든 마찰압접 조건에서 컵합이옴부는, 기폰 모재의 texture 조직 을 유지하고 있는 모재부 영역(영역 ill)과 첩합계면부에 인접하여 업셋압력이 주어질 때 단조 효과에 의해 계연 외부로 metal flow가 일어나면서 형성된 영역 II, 매우 미세한 결정립으로 구성된 중앙부의 영역 1 로 이투어져 있옴융 확인하였다. ( (3) 최적접합조건이 충족되지 않온 경우, 접합부의 영역 I 에서 관찰된 void와 균열, 불균일한 접합계면 통의 접합결함에 Al과 Y. Ti 퉁£로 구성된 산화물률이 용집되어 있옴을 확인하였 다-( (4) 접합체의 파단 양상온 크게 접합부 파단과 모재부 파단, 이률의 혼합형 파단i로 나눌수 있었다. 모재부 파단의 경우, 파단면이 매끄럽고 파변상의 결정립도 매우 미세하였으며, 산확물 의 용집도 찾아보기 어려웠 나, 접합부 파단의 경우에는 파변의 굴곡이 비교척 심하고 연성 입계파괴의 형태를 보였£며, 결정립도 모채부 파단의 경우에 비해 조대하였다. 조대하였다.

  • PDF

A Study on Friction Welding of Localized SPS5 Spring Steel (국산 SPS5 스프링강의 마찰용접에 관한 연구)

  • Jeong, S.U.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.803-808
    • /
    • 2000
  • This thesis studied whether friction welding of SPSS, localized torsion bar material could be accomplished or not. And then optimum welding conditions were examined and leaded through tensile, impact, torsion and hardness test after postweld heat treatment of the actual field condition. Obtained results were as follows; Linear relationship was existed between heating time and total upset, and a quadratic equation model could be made between tensile strength and heating time. Optimum welding conditions with fine structure were as follows in case total upset(U)=8.5mm; the number of rotations(n)=2,000 rpm, heating pressure($p_1$)=80MPa, upset pressure($p_2$)=200MPa, heating time($t_1$)=4sec, upset time($t_2$)=3 sec.

  • PDF

A Experimental Study on Strength Safety of Rail Steel using Gas Pressure Welding (레일 가스압접부의 강도 안전성에 관한 실험적 연구)

  • Kim, Kyung-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • This study was carried out for the purpose of improving driving safety and comfort of the railways quickly becoming popular. To conducted gas pressure welding to ensure the strength safety of continuous welded rail and rotating bending test tensile test was conducted. The element to determine the tensile strength of gas pressure welds at experiments be attributed to more upsetting length than pressure, according to increases of upsetting length, from brittle fracture to ductile fracture was observed. Through the biopsy of the fracture surface, according to the presence of brittle fracture could be evaluated to strength safety. In addition, mechanical strength of gas pressure welding depending on changes in upsetting length was different. Rotary bending test results were obtained to the infinite life according to exhibited higher fatigue limit of 373MPa at upsetting length 25mm.

Effects of Friction Pressure on Bonding Strength and a Characteristic of Fracture in Friction Welding of Cu to Cu-W Sintered Alloy (동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접에서 마찰압력이 접합강도와 파단특성에 미치는 영향)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.90-98
    • /
    • 1997
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of friction pressure on bonding strength and a charicteristic of fracture. The tensile strength of the friction welded joint was increased up to 90% of the Cu base metal under the condition of friction time 1.2 sec, friction pressure 4.5kgf/$\textrm{mm}^2$ and upset pressure 10kgf/$\textrm{mm}^2$. From the results of fracture surface analysis, the increase of friction pressure could remarkably decrease the force and the time to be normally acted on weld interface. The W particles which were included in the plastic zone of Cu side could induce fracture adjacent to the weld interface because their existance in Cu induces a decrease in available section area and an increase in notch effect. Therefore, the tensile strength was decreased at high friction pressure (6kgf/$\textrm{mm}^2$) because the destruction of W was increased by an increase in mechanical force and crack was formed at weld interface.

  • PDF

Effect of Upset pressure on weldability in the Friction Welding of SM45C-Solid and SM45C-Pipe which is used in the Piston-Rod (경량화 피스톤 로드에 사용되는 SM45C/SM45C-Pipe의 마찰용접시 업셋압력이 미치는 영향)

  • Min, Byung-Hoon;Choi, Won-Yong;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.36-43
    • /
    • 2008
  • This research is tendencious to manufacture solid piston-rod of shock absorber as hollow piston-rod using friction welding. The SM45C has been welded to the SM45C-pipe in order to investigate the effect of upset pressure on friction weldability. The friction time and upset pressure was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. When the upset pressure is sufficient, gets the high tensile strength. The optimal welding conditions were n=2,000rpm, $P_1$=55MPa, $P_2$=95MPa, $t_1$=1.5sec, $t_2$=2.0sec when the total upset length is 4.5mm.

The Relationship between Welding Conditions and Ultrasonic Reflection Coefficients of Dissimilar Metals Friction Welded Joints (이종재 막찰용접 이음부에서의 초음파 반사계수와 용접조건과의 관계)

  • 오세규;김동조;한상덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.138-143
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial applications with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristcs of the pulse echo effects according to various change in welding conditions. This paper presents an attempt to determine the relationship between the varios welding conditions and the coefficients of reflection using the ultrasonic pulse echo method in dissibilar metals friction weld. The new approach of calculating the coefficients of reflection based on measured amplitudes of the echoes is applied in this paper. These coefficients provides a single quantitative measurement which involves both acoustic energy reflected at the welded interface as well as transmitted across the interface. As a result, it was known that the quantitave relationship between welding conditions and the coefficients of reflection using the ultrasonic pulse echo exists in dissimilar metals friction weld.

  • PDF

Study on Friction Welding of Torsion Bar Material(1) -Optimization of Friction Welding Technique- (토션 바재의 마찰용접에 관한 연구(I) -마찰용접기술의 최적화에 대하여-)

  • 오세규;이종두
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.101-109
    • /
    • 1990
  • The friction welding has more technical and economic advantages than the other welding processes. As this welding process has the characteristics such as curtailment of production time, materials, cost reduction, etc., it has been widely used in production of various mechanical components which have complex shapes. So, this paper deals with optimizing the friction welding conditions and analyzing various mechanical properties of the friction welded joints of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) The quantitative relation between heating time($t_{1}$, sec) and total upset(U, mm)can be obtained. The empirical formula obtained is ; U = 3.29$t_{1}$ + 1.6 2) The tensile strength($\sigma_{t}$, kgf/$mm^{2}$) of friction welding joints as post weld heat treated(PWHT) depends upon heating time($t_{1}$, sec) quantitatively and the empirical formula obtained is ; $\sigma$= -5.1$t_{1}\;^{2}$+44.90$t_{1}$+45.2 3) It is certain that the optimum condition for friction welded joints of SUP9A steel bars of diameter 14.5mm is, considering on various properties such as tensile strength, torsional strength, impact energy and strain of the joints after PWTH ; n = 2000rpm, $P_{1}$=8kgf/$mm^{2}$, $P_{2}$=20kgf/$mm^{2}$, $t_{1}$=4sec, $t_{2}$=3sec 4) The tensile strength, torsional strength and hardness were increased with the increased with the increasing carbon equivalent, but toughness was decreased.

  • PDF

A study on welding structure and thermal behavior in friction welding of austenitic stainless steel (오스테나이트계 스테인레스강의 마찰압접시 압접조직과 열적거동에 관한 연구)

  • 강춘식;정태용
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.43-53
    • /
    • 1990
  • The transient temperature distribution in the continuous friction welding 304 stainless steel bars is investigated by experimental and analytical methods. It is calculated by F.D.M. (finite difference method). The heating pressure, the rotational speed and friction coefficient obtained from experiment are used to determine the heat input at the contacting surface. Thermal properties of the workpiece are the function of temperature. The calculated temperature is well coincided with the measured value. The grain size at weld interface is extremely small due to the severe plastic deformation at high temperature, and result of this refined zone reveals higher hardness value. Because the HAZ is very narror about 2-3 mm, welding defects do not occure.

  • PDF

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • S. K. Oh;D. J. Kim;S. D. Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.34-34
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • O, Se-Gyu;Kim, Dong-Jo;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.80-85
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

  • PDF