• Title/Summary/Keyword: 얼음 형성시간

Search Result 14, Processing Time 0.025 seconds

Effect of Carbon Nano Tube for the Methane hydrate formation (메탄 하이드레이트 생성을 위한 탄소나노튜브의 영향)

  • Park, Sung-Seek;Seo, Hyang-Min;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.699-702
    • /
    • 2009
  • 가스하이드레이트(Gas Hydrate)는 특정한 온도와 압력조건하에서 물분자로 이루어진 공동 내로 메탄, 에탄, 프로판 등의 가스가 들어가 물분자와 상호 물리적 결합으로 형성된 외관상 얼음과 비슷한 고체 포유물로 자연상태에 존재하는 하이드레이트의 주 성분이 메탄(Methane)인 경우가 대부분인 까닭에 메탄 하이드레이트라고도 불린다. 표준상태에서 $1m^3$의 메탄하이드레이트는 $172m^3$의 메탄가스와 $0.8m^3$의 물로 분해된다. 그러나 메탄 하이드레이트를 인공적으로 만들경우 물과 가스의 반응율이 낮아 하이드레이트 생성시간이 상당히 길고 가스 용해율도 낮다. 따라서 하이드레이트를 빨리 만들며 가스충진율도 증가시킬 수 있는 방법으로 가스 흡착성이 있는 탄소나노튜브(Carbon Nano Tube)를 기계적 분산방법인 초음파 분산(Dispersion)과 화학적 개질에 의한 분산방법인 산화처리분산을 사용하여 탄소나노튜브와 산화탄화나노튜브를 순수한물에 분산하여 나노유체를 만들고, 나노유체와 메탄가스를 반응시켜 메탄하이드레이트를 생성시키는 실험을 수행하였다. 나노유체와 순수한물의 상평형(Phase Equilibrium)은 비슷하였으며, 탄소나노튜브를 0.0005Vol%를 분산한 나노유체와 순수한물의 메탄가스 소모량의 비교한결과 나노유체의 가스소모량의 순수한물보다 ${\Delta}T_{sub}$=0.5K에서는 2배 ${\Delta}T_{sub}$=9.7K에서는 1.6배 증가하였다. 또한 산화나노유체와 나노유체의 메탄 가스소모량은 산화나노유체가 0.01 ~ 0.02mol정도 높았으나 그 효과가 미미하였고, 교반기를 사용하여 RPM300으로 교반시켰을 경우 역시 메탄 가스소모량은 큰 차이가 없었으나 산화나노유체의 경우 메탄 가스소모량이 나노유체보다 급격히 증가함을 확인하였다.

  • PDF

Optimization of the Scraper Speed and Improvement of the Refrigerant Path for the Evaporator of the Soft Ice Cream Machine (소프트 아이스크림 제조기 증발기의 스크레이퍼 회전수 최적화 및 냉매 유로 개선)

  • Baek, Seung-Hyuk;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.8-14
    • /
    • 2017
  • Improvements in the standard of living and lifestyle have led to increased sales of frozen milk products, such as soft ice cream or slush. These frozen milk products are commonly made in a small refrigeration machine. In a soft ice cream machine, the freezer is composed of a concentric cylinder, where the refrigerant flows in the annul us and the ice cream is made in the cylinder by a rotating scraper. In this study, an optimization and performance evaluation were conducted on a soft ice cream machine having a freezer volume of 2.8 liters. The optimization was focused on the scraper rotation speed and the refrigerant path of the freezer. The measurements included the temperature, pressure and consumed power. At the optimized speed of 124 rpm, ice cream was produced in 6 minutes and 2 seconds, and the COP was 0.90. Through a flow visualization study using air-water, the refrigerant path was improved. The improved design reduced the ice cream making time significantly. The present results may be used for the optimization of other refrigeration cycles, including those of frozen food products.

A Deep-Learning Based Automatic Detection of Craters on Lunar Surface for Lunar Construction (달기지 건설을 위한 딥러닝 기반 달표면 크레이터 자동 탐지)

  • Shin, Hyu Soung;Hong, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.859-865
    • /
    • 2018
  • A construction of infrastructures and base station on the moon could be undertaken by linking with the regions where construction materials and energy could be supplied on site. It is necessary to detect craters on the lunar surface and gather their topological information in advance, which forms permanent shaded regions (PSR) in which rich ice deposits might be available. In this study, an effective method for automatic detection of lunar craters on the moon surface is taken into consideration by employing a latest version of deep-learning algorithm. A training of a deep-learning algorithm is performed by involving the still images of 90000 taken from the LRO orbiter on operation by NASA and the label data involving position and size of partly craters shown in each image. the Faster RCNN algorithm, which is a latest version of deep-learning algorithms, is applied for a deep-learning training. The trained deep-learning code was used for automatic detection of craters which had not been trained. As results, it is shown that a lot of erroneous information for crater's positions and sizes labelled by NASA has been automatically revised and many other craters not labelled has been detected. Therefore, it could be possible to automatically produce regional maps of crater density and topological information on the moon which could be changed through time and should be highly valuable in engineering consideration for lunar construction.

Effect of supercooling on the storage stability of rapidly frozen-thawed pork loins (과냉각 온도가 급속냉동-해동 처리된 돈육 등심의 저장성에 미치는 영향)

  • Choi, Eun Ji;Park, Hae Woong;Chung, Young Bae;Kim, Jin Se;Park, Seok Ho;Chun, Ho Hyun
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.168-180
    • /
    • 2017
  • This study was performed to determine the rapid thawing method for reducing the thawing time of frozen pork loins and to examine the effects of supercooling on the microbiological, physicochemical, and sensory qualities of fresh and frozen-thawed pork during storage at -1.5, 4, and $15^{\circ}C$. Forced-air thawing at $4^{\circ}C$ was the most time-consuming process, whereas radio frequency thawing time was the shortest by dielectric heating. The supercooling storage temperature was chosen to be $-1.5^{\circ}C$ because microstructural damages were not observed in the pork sample after cooling at $-1.5^{\circ}C$ for 24 h. Fresh or frozen-thawed pork loins stored at $-1.5^{\circ}C$ had lower drip loss and total volatile base nitrogen, thiobarbituric acid-reactive substance, and Hunter b* levels than loins stored at 4 and $15^{\circ}C$. In addition, the least degree of increase in preexisting microorganisms counts of the fresh or frozen-thawed pork loin samples was obtained during supercooled storage at $-1.5^{\circ}C$. Sensory quality results of fresh and frozen-thawed pork loin samples stored at $-1.5^{\circ}C$ showed higher scores than the samples stored at 4 and $15^{\circ}C$. These data indicate that supercooling at $-1.5^{\circ}C$ in the meat processing industry would be effective for maintaining the quality of pork meats without ice crystal nucleation and formation.