• 제목/요약/키워드: 얼굴 합성

검색결과 140건 처리시간 0.026초

얼굴의 특징을 이용한 캐리커쳐 생성에 관한 연구 (A study on the Caricature Generation using Face Features)

  • 오승하;임현;박순영;김일수;박호성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.623-626
    • /
    • 2000
  • 본 논문에서는 얼굴의 특징 추출을 이용해서 캐리커쳐를 자동으로 생성하는 알고리즘을 제안한다. 제안된 방법은 사진이나 카메라를 이용해서 입력된 영상으로부터 색상정보를 이용하여 얼굴영역을 검출하고 얼굴의 기하학적인 구조를 이용해서 유전자 알고리즘의 추정 파라미터를 설정하여 최적의 특징 점의 위치를 검출한다. 검출된 특징 점 위치를 이용하여 눈, 코, 입, 눈썹, 머리카락 등 얼굴의 특징이 되는 구성요소를 추출한다. 마지막으로 얼굴의 윤곽선을 구한 다음 추출된 얼굴의 구성요소들을 합성하여 간단하면서도 개인의 특징을 잘 반영할 수 있는 캐리커쳐를 생성한다.

  • PDF

표준형상모형 정합을 통한 얼굴표정 구조 분석 (Structural Analysis of Facial Expressions Measured by a Standard Mesh Frame)

  • 한재현;심연숙;변혜란;오경자;정찬섭
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1999년도 추계학술대회 논문집
    • /
    • pp.271-276
    • /
    • 1999
  • 자동 표정인식 및 합성 기술과 내적상태별 얼굴표정 프로토타입 작성의 기초 작업으로서 특정 내적상태를 표현하는 얼굴표정의 특징적 구조를 분석하였다. 내적상태의 평정 절차를 거쳐 열 다섯 가지의 내적상태로 명명된 배우 여섯 명에 대한 영상자료 90장을 사용하여 각 표정의 특징적 구조를 발견하고자 하였다. 서로 다른 얼굴들의 표준화 작업과 서로 다른 표정들의 직접 비교 작업에 정확성을 기하기 위하여 각 표정 표본들을 한국인 표준형상모형에 정합하였다. 정합 결과로 얻어진 각 얼굴표정의 특징점에 대해 모형이 규정하고 있는 좌표값들만으로는 표정해석이 불가능하며 중립얼굴로부터의 변화값이 표정해석에 유효하다는 결론을 얻었다. 표정의 특징적 구조는 그 표정이 표현하는 내적상태가 무엇인가에 따라 발견되지 않는 경우도 있었으며 내적상태가 기본정서에 가까울수록 비교적 일관된 형태를 갖는 것으로 나타났다. 내적상태별 특징적 표정을 결정할 수 있는 경우에 표정의 구조는 얼굴표정 요소들 중 일부에 의해서 특징지어짐을 확인하였다.

  • PDF

3D 얼굴 모델 기반의 GAN을 이용한 게임 캐릭터 회전 기법 (A GAN-based face rotation technique using 3D face model for game characters)

  • 김한동;한종대;양희경;민경하
    • 한국게임학회 논문지
    • /
    • 제21권3호
    • /
    • pp.13-24
    • /
    • 2021
  • 본 논문은 게임 캐릭터 얼굴 일러스트레이션에 적용할 수 있는 안면 회전 기술(Face rotation) 기술을 제안한다. 기존의 진행된 연구들은 실제 사람의 얼굴 데이터에 대해서로 데이터를 한정하였으며 방대한 양의 데이터를 필요로 하였고 합성된 결과물이 좋지 못한 문제가 있었다. 본 논문에서는 기존 연구들의 존재하는 문제를 해결하기 위해 다음과 같은 방법을 도입하였다. 첫째, 입력 이미지가 갖고 있는 특징을 입힌 3D 모델을 회전시키고 다시 2D 이미지로 렌더링하여 학습 및 평가에 필요한 데이터 셋을 구축하였다. 둘째, 3D 모델을 통해 구축된 데이터에서 다양한 각도의 특징을 학습할 수 있는 적대적 생성 모델(Generative Adversarial Networks)을 설계하여 입력된 이미지를 원하는 각도로 합성할 수 있다. 논문에서는 실제 게임 캐릭터 얼굴 일러스트레이션 합성 결과를 제시한다. 합성 결과를 통해 논문에서 제안하는 방법이 잘 동작함을 확인할 수 있다.

빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현 (Implementation of Hair Style Recommendation System Based on Big data and Deepfakes)

  • 김태국
    • 사물인터넷융복합논문지
    • /
    • 제9권3호
    • /
    • pp.13-19
    • /
    • 2023
  • 본 논문에서는 빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현에 관해 연구하였다. 제안한 헤어스타일 추천 시스템은 사용자의 사진(이미지)을 바탕으로 얼굴형을 인식한다. 얼굴형은 타원형, 둥근형, 장방형으로 구분하며, 얼굴형에 잘 어울리는 헤어스타일을 딥페이크를 통해 합성하여 동영상으로 제공한다. 헤어스타일은 빅데이터를 바탕으로 최신 트랜드(trend)와 얼굴형에 어울리는 스타일을 적용하여 추천한다. 이미지의 분할 맵과 Motion supervised Co-Part Segmentation 알고리즘으로 같은 카테고리(머리, 얼굴 등)를 가지는 이미지들 간 요소를 합성할 수 있다. 다음으로 헤어스타일이 합성된 이미지와 미리 지정해둔 동영상을 Motion Representations for Articulated Animation 알고리즘에 적용하여 동영상 애니메이션을 생성한다. 제안한 시스템은 가상 피팅 등 전반적인 미용산업에 활용될 수 있을 것으로 기대한다. 향후 연구에서는 거울에 사물인터넷 기능 등을 적용하여 헤어스타일등을 추천해주는 스마트 거울을 연구할 예정이다.

얼굴 깊이 추정을 이용한 3차원 얼굴 생성 및 추적 방법 (A 3D Face Reconstruction and Tracking Method using the Estimated Depth Information)

  • 주명호;강행봉
    • 정보처리학회논문지B
    • /
    • 제18B권1호
    • /
    • pp.21-28
    • /
    • 2011
  • 얼굴의 3차원 정보는 얼굴 인식이나 얼굴 합성, Human Computer Interaction (HCI) 등 다양한 분야에서 유용하게 이용될 수 있다. 그러나 일반적으로 3차원 정보는 3D 스캐너와 같은 고가의 장비를 이용하여 획득되기 때문에 얼굴의 3차원 정보를 얻기 위해서는 많은 비용이 요구된다. 본 논문에서는 일반적으로 손쉽게 얻을 수 있는 2차원의 얼굴 영상 시퀀스로부터 효과적으로 3차월 얼굴 형태를 추적하고 재구성하기 위한 3차원 Active Appearance Model (3D-AAM) 방법을 제안한다. 얼굴의 3차원 변화 정보를 추정하기 위해 학습 영상은 정면 얼굴 포즈로 다양한 얼굴 표정 변화를 포함한 영상과 표정 변화를 갖지 않으면서 서로 크게 다른 얼굴 포즈를 갖는 영상으로 구성한다. 입력 영상의 3차원 얼굴 변화를 추정하기 위해 먼저 서로 다른 포즈를 갖는 학습 영상으로부터 얼굴의 각 특징점(Land-mark)의 기하학적 변화를 이용하여 깊이 정보를 추정하고 추정된 특징점의 깊이 정보를 입력 영상의 2차원 얼굴 변화에 추가하여 최종적으로 입력 얼굴의 3차원 변화를 추정한다. 본 논문에서 제안된 방법은 얼굴의 다양한 표정 변화와 함께 3차원의 얼굴 포즈 변화를 포함한 실험 영상을 이용하여 기존의 AAM에 비해 효과적이면서 빠르게 입력 얼굴을 추적(Fitting)할 수 있으며 입력 영상의 정확한 3차원 얼굴 형태를 생성할 수 있음을 보였다.

SSD 기반의 잔차 학습 신경망을 이용한 얼굴 검출 (SSD Based Face Detection using Residual Connections)

  • 이석희;장영균;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.252-254
    • /
    • 2019
  • 본 논문은 합성곱 기반의 Single Shot Multibox Detector(SSD) [1] 의 구조를 이용하여 다양한 스케일의 얼굴들을 잘 검출하도록 하였다. 얼굴 검출은 물체 검출과는 다르게 얼굴의 높이와 너비의 비율이 다소 일정하고 크기가 작은 경우가 많은데, 이에 맞게 얼굴 검출이 용이하도록 anchor의 스케일, 비율, 크기를 변경하였다. 특징점 추출 네트워크는 깊은 네트워크의 최적화를 용이하게 하는 skip connection을 이용한 ResNet-50 [2] 기반을 사용하였다. 다양한 크기, 조명, 환경, 각도의 얼굴들을 포함하는 영상들로 이뤄진 Wider Face[3] 데이터 셋의 easy validation set으로 실험한 결과 0.782과 hard validation set에서 0.611의 average precision을 보였다.

  • PDF

합성 대표영상에 기반 한 조명 변화무관 얼굴 인식 (Illumination Invariant Face Recognition based on the Synthesized Exemplars)

  • 문송향;이상웅;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.685-687
    • /
    • 2004
  • 최근 생체 인식에 대한 관심이 고조됨에 따라. 다양한 환경 변화에 강인한 얼굴 인식 방법들이 연구되고 있다. 특히, 조명 변화를 처리하기 위한 연구들이 세계적으로 발표되고 있다. 그러나 기존 방법들은 다수의 등록영상이나 조명에 대한 사전 지식이 필요하다는 제약조건을 가지고 있다. 본 논문에서는 기존 방법의 한계점을 해결하기 위해 조명 대표영상의 선형 분석을 이용한 새로운 방법론을 제안하였다. 또한 제안 방법의 효율성을 입증하기 위하여 공인된 얼굴 데이터베이스를 이용하여 다양한 실험을 시도하였으며, 이를 통해 제안된 방법 이 기존의 다른 방법에 비하여 안정적인 인식 성능을 보이는 것을 확인할 수 있었다.

  • PDF

노이즈 모델에 기반한 훼손된 얼굴 영상의 인증 (Authenticating Corrupted Face Images Based on Noise Model)

  • 정호철;황본우;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.805-807
    • /
    • 2004
  • 본 논문에서는 노이즈 모델에 기반한 훼손된 얼굴 영상의 인증하는 방법을 제안한다. 제안된 방법은 먼저 학습 단계에서 노이즈 파라미터의 변화에 의해 훼손된 영상을 생성한다. 그 훼손된 영상과 노이즈 파라미터는 PCA에 의해 훼손된 영상과 노이즈 파라미터들의 선형 조합으로 표현된다. 테스트 단계에서는 훼손된 영상으로 LSM(Least-square minimization)방법을 적용하여 훼손된 영상의 노이즌 파라미터를 추정한다. 그리고 추정된 노이즈 파라미터를 가지고 원본 영상으로부터 합성된 영상을 생성하고, 그것을 테스트 영상과 인증한다. 실험 결과는 제안된 방법이 노이즈 파라미터를 정확하게 추정하여 얼굴 인증의 성능 개선 가능성을 보여준다.

  • PDF

저해상도 얼굴 영상의 해상도 개선을 위한 영역 기반 복원 방법 (Region-Based Reconstruction Method for Resolution Enhancement of Low-Resolution Facial Image)

  • 박정선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권5호
    • /
    • pp.476-486
    • /
    • 2007
  • 본 논문에서는 영역 기반 복원 방법을 통하여 한 장의 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 복원하는 방법을 제안한다. 제안된 방법은 예제 기반 복원과 얼굴 영상을 형태 정보와 질감 정보로 나누어 표현하는 변형 가능 얼굴 모형에 기반한다. 먼저, 예제 기반 복원 방법의 성능을 개선하기 위하여, 전역 복원 결과와 국부적 복원 결과를 결합하는 영역 기반 복원 방법을 제안한다. 또한, 변형 가능 얼굴 모형의 장점을 해상도 복원에 적용하기 위하여, 확장된 변형 가능 얼굴 모형을 정의한다. 제안된 모형에서 얼굴 영상은 저해상도 얼굴 영상, 보간법을 통해 개선한 고해상도 얼굴 영상, 그리고 원래의 고해상도 얼굴 영상의 쌍으로 구성되며, 이는 다시 확장된 형태 정보와 확장된 질감 정보로 나뉜다. 다양한 실험을 통하여, 제안된 방법이 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 효과적으로 복원함을 입증하였으며, 이 방법을 사용하여 원거리 감시 시스템에서 획득된 저해상도 얼굴 영상을 고해상도 얼굴 영상으로 합성함으로써, 얼굴 인식 시스템의 성능을 높일 수 있는 가능성을 확인하였다.

인물 얼굴의 나이 판단과 아기도식 속성에 대한 순응의 잔여효과 (Adaptation to Baby Schema Features and the Perception of Facial Age)

  • 이예진;김성호
    • 감성과학
    • /
    • 제25권4호
    • /
    • pp.157-172
    • /
    • 2022
  • 본 연구는 순응 잔여효과 패러다임을 이용하여, 아기도식 속성을 담고 있는 여러 시각 자극들(얼굴, 신체실루엣, 손)이 공통의 처리 기제를 통해 나이 지각에 영향을 주는지 확인하고자 하였다. 실험 1에서는 아기 얼굴 혹은 성인 얼굴에 순응시킨 후 아기와 성인 얼굴을 합성(morphing)한 얼굴 자극에 대해 "아기"로 지각되는지 혹은 "성인"으로 지각되는지 판단하도록 하였다. 실험 결과, 아기 순응 조건보다 성인 순응 조건에서 합성 자극을 아기로 지각하는 비율이 더 우세한, 얼굴 나이 순응 잔여효과(age adaptation aftereffect)를 확인하였다. 실험 2와 3에서는 각각 아기와 성인의 신체 실루엣과 손 이미지를 순응자극으로 사용하여 실험 1과 동일한 나이 판단 과제를 실시하였다. 실험 결과, 신체 실루엣과 손에 대한 순응은 순응자극과 같은 방향의 잔여효과(assimilative aftereffect)를 유발하거나, 순응 후에 제시되는 얼굴에 대한 나이 지각을 편향시키지 않았다. 본 연구는 성인 연령대의 얼굴 자극만을 사용한 선행 연구와 달리, 아기-성인 간 얼굴 나이 순응 잔여효과를 통해 아기와 성인 얼굴의 나이 속성이 지각적 얼굴 공간 상에서 대조적인 방향으로 부호화된다는 것을 확인하였으나, 여러 아기도식 속성들이 공통된 처리를 통해 나이 표상에 기여한다는 증거를 확인하지는 못하였다.