얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.
본 논문은 서로 다른 얼굴이미지 사이의 얼굴매칭기법의 새로운 방법인 TBCC(T-Block constraints Condition)얼굴매칭기법을 제안한다. 본 논문에서 제안하는 방법은 T영역안의 이목구비에다가 제어영역을 두고, T영역과 제어영역들을 분리하여 2개의 영상으로 각각 만든 다음에 각각의 correspondence가 있는 영상끼리 와핑(Warping)을 한 후에, 제어영역들은 2단계구조를 가진 계층적인 선형조합(Linear Combination)모델에 적용시켜 최적의 위치를 찾아낸 후에, T영역에 와핑시켜서 하나의 합성사진을 만들어 낸다. 합성사진에서 피부색이 다른 문제는 정규분표를 이용한 크로스디졸브(Cross-Dissolve)방법인 이미지프로세싱 기법을 새롭게 적용하며, 그리고, T모양의 자국이 남는 것은 본 논문에서 제안하는 T-Block Color Interpolation방법을 적용해서 해결한다.
본 논문에서는 3D 모델의 눈 변형을 계산하기 위해 검출된 눈 형태를 이용한 눈 움직임 합성 방법을 제안하였다. 얼굴 특징들의 정확한 위치 측정과 추적은 MPEG-4 코딩 시스템을 기반으로 한 고품질 모델 개발에 중요하다. 매우 낮은 비트율의 영상회의 응용에서 시간의 경과에 따라 눈과 입술의 움직임을 정확히 추적하기 위해 얼굴 특징들의 정확한 위치 측정과 추적이 필요하다. 이들의 움직임은 코딩되어지고 원격지로 전송되어 질 수 있다. 애니메이션 기술은 얼굴 모델에서 움직임을 합성하는데 이용되어진다. 본 논문에서는 얼굴 특징 검출과 추적 알고리즘으로 잘 알려지고, 효과적으로 향상시킬 수 있는 휴리스틱 방법을 제안하겠다. 본 논문에서는 눈 움직임의 검출뿐만 아니라 추적, 모델링에도 초점을 두었다.
본 연구에서는 박수진, 김한경, 한재현, 이정원, 김종일, 송경석, 정찬섭(2001)에서의 발견을 토대로 얼굴의 범주-차원적 감성 구조를 정립하였다. 박수진 등의 연구는 얼굴의 감성 구조를 이루는 2개의 차원축으로 '앳되다-성숙하다', '날카롭다-부드럽다'를 제안하였었다. 본 연구에서는 이들 축으로 이뤄진 얼굴의 2차원 감성 공간 내에 균일하게 17개의 위치를 선정하고 각 위치들에 합성된 해당 얼굴들을 위치시킴으로써 해당 공간의 얼굴 특징을 시각화하였다. 또한 얼굴의 물리적 특징의 변화가 감성에 어 떤 영향을 주는지를 두 개의 주요 축을 중심으로 살펴보았다. 마지막으로 범주 모형으로서 개별 감성 어휘들과 얼굴의 물리적 특징이 어떤 관계가 있는지를 일차적으로 살펴보았다.
본 논문에서는 얼굴의 밝기와 색상 정보를 함께 이용한 합성곱 신경망 기반의 얼굴 위변조 검출 방법을 제안한다. 제안하는 방법은 적층된 합성곱 신경망과 보조 신경망을 이용하여 실제 얼굴과 위변조된 얼굴의 밝기 특징과 색상 특징을 독립적으로 추출한다. 기존의 방법과는 달리, 본 논문에서는 추출된 특징을 단순 결합(Concatenation)하는 것이 아니라 주의 모듈(Attention Module)을 이용하여 적응적(Adaptively)으로 조합할 수 있도록 하였다. 또한, 효과적인 분류기 학습을 위하여 대비 손실함수(Contrast Loss Function)를 새롭게 제안하였는데, 대비 손실함수는 동일 클래스 내의 특징 간의 차이는 최소화 시키고 서로 다른 클래스의 특징 간의 차이는 최대화 시킴으로써 특징의 분별력을 높인다. 다양한 실험을 통해 본 논문에서 제안하는 방법이 기존 얼굴 위변조 검출 방법 대비 개선된 성능을 보임을 확인하고 그 결과를 분석한다.
본 논문에서는 상관에 기반 한 비선형 합성필터를 이용한 왜곡과 잡음에 강인한 얼굴인식 방법을 연구한다. 상관도 기반 방법은 얼굴 영역의 검출과 인증을 동시에 수행하여 보다 신속한 처리를 할 수 있다는 장점이 있다. 최적화된 비선형 합성필터는 학습영상의 출력 값을 일정하게 유지하면서 입력 영상과 잡음의 필터 출력에너지를 최소화함으로써 얻어진다. 입력 영상의 출력에너지를 최소화하여 허위표적과의 식별력을 부여하고 잡음의 출력에너지를 최소화하여 가산성 잡음에 대한 강인성을 증대한다. 본 논문에서는 비선형 합성필터를 두 개의 학습 영상으로 구성하여 표적의 왜곡과 저해상도 그리고 잡음 환경 하에서 얼굴 인증을 실험하였다. 실험결과는 비선형 합성필터가 SDF(synthetic discriminant function) 필터와 비교하여 ROC(receiver operating characteristics) 커브에서 우수한 성능을 보인다.
본 논문에서는 연속 프레임에서 움직임이 큰 얼굴을 자동으로 추적하기 위해 두 단계 합성 기울기 지형 생성 방법을 제안한다. 본 제안 방법은 다음과 같은 세 가지 단계로 이루어진다. 첫째, 활성 외곽선이 빠르게 수렴하기 위한 두 단계 해상도 기울기 맵을 생성한다. 둘째, 연속하는 프레임 간의 변위를 파악하고 주변 배경을 제거하기 위하여 이전 프레임과 현재 프레임의 합성 기울기 맵과 차별 마스크를 산정하여 가중 합성 기울기 맵을 구성한다. 셋째, 활성 외곽선이 지역적 최소값에 수렴하는 것을 막기 위해 닫기 연산을 사용하여 에너지 비탈면을 생성한다. 이 때, 닫기 연산의 계산 비용 문제는 빠른 닫기 연산을 통해 해결한다. 제안방법의 정확성을 평가하기 위해 기존 활성 외곽선 모델 기반 방법들과 제안방법의 수행 결과를 통한 육안 평가와 활성 외곽선의 평균 에너지 변화를 통한 견고성 평가를 수행하고, 수행 시간을 분석한다. 실험 결과 제안방법의 경우 배경의 영향을 받지 않으면서 얼굴의 움직임이 큰 경우에도 빠르고 정확하게 추적할 수 있었다.
본 논문에서는 단일 카메라를 이용하여 얼굴의 움직임 정보를 추정하고 3차원 모델을 합성하기 위한 기법을 제안한다. 먼저 단일 카메라 입력 영상에서 사용자의 얼굴 영역 특징 점 취득을 위한 4개의 하부 이미지를 획득한다. 획득된 4개의 하부 이미지를 템플릿으로 사용하여 사용자 얼굴 영역의 정보를 추출하며, 이들 4개의 특징 점을 사용하여 사용자 얼굴과 카메라 영상 평면 사이의 사영 관계를 계산한다. 취득된 카메라 행렬로부터 얼굴의 움직임 정보인 이동과 회전 성분을 추정할 수 있으며, 이를 기반으로 3차원 모델의 자세 정보를 설정한 다음 이를 사용자 얼굴에 가상의 객체를 합성하기 위한 정보로 이용한다. 다양한 실험을 통하여 사용자 얼굴의 움직임에 대한 정보 추출의 정확도를 검증하였다.
본 논문에서는 인간의 중요한 감정표현 수단인 얼굴표정을 분석하는 방법을 제시하였다. 제안된 방법에서는 기준얼굴과 그의 혼합 비율의 관점에서 얼굴표정을 분석한다. 기준얼굴은 인간의 대표적인 얼굴표정인 놀람, 두려움, 분노, 혐오, 행복, 슬픔, 그리고 무표정으로 설정하였다. 얼굴 모델의 생성을 위해 일반 얼굴 모델이 얼굴영상으로 정합하는 방법을 사용하였다. 기준얼굴의 혼합 비율을 구하기 위해 유전자 알고리즘과 Simulated Annealing 방법을 사용하였고 탐색된 얼굴표정 정보를 이용한 얼굴표정 생성 실험을 통해 제안된 방법의 유용성을 입증하였다.
본 논문에서는 가상성형 시스템에 적합한 Radial Basis Function(RBF) 기반의 변형 기법과 변형된 얼굴 구성 요소를 얼굴 영상에 혼합하는 기법을 제시한다. 가상성형을 위한 변형 기법은 유동적인 얼굴 구성 요소들을 변형함에 있어 부드러움과 정확성을 가져야 하고 변형 부위 이외의 다른 얼굴 구성 요소에는 왜곡을 주지 않는 지역성도 가져야 한다. 이를 위해 제안된 가상성형 시스템은 자유형태 변형 모델을 기반으로 RBF에 의해 격자들의 변형 정도를 계산한다. 성형의 정확성을 위해 변형 오차는 기준곡선 정점들의 목표 위치와 실제 변형된 위치 사이의 오차제곱합을 이용하여 Singular Value Decomposition(SVD)에 의해 반복적으로 RBF 매핑 함수의 계수들을 계산하여 보정한다. 변형된 얼굴 구성 요소는 Euclidean Distance Transform(EDT)에 의해 계산된 혼합 비율을 사용하여 원본 얼굴 영상과 합성된다. 제안된 변형 기법과 합성 기법은 가상성형 결과의 정확도와 왜곡 측면에서 우수한 성능을 보인다는 것을 실험적으로 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.