• 제목/요약/키워드: 얼굴 표정 상태 벡터

검색결과 11건 처리시간 0.014초

연상기억과 뉴런 연결강도 모듈레이터를 이용한 해마 학습 알고리즘 개발 (Development of the Hippocampal Learning Algorithm Using Associate Memory and Modulator of Neural Weight)

  • 오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.37-45
    • /
    • 2006
  • 본 논문에서는 인지학에서 연구되고 있는 동질 연상 기억 현상과 장기 및 단기 기억 강화 조절 기능을 담당하는 해마의 두뇌 원리를 공학적으로 모델링한 MHLA(Modulatory Hippocampus Learning Algorithm)의 개발을 제안한다. 해마에서 중요시 하는 연관된 3단계 조직(DG, CA3, CAl)에 기반한 동질 연상 메모리를 구성하도록 하였으며, 장기 기억 학습에 모듈레이터(modulator)를 추가하여 학습 수렴 속도를 향상시켰다. 해마 구조에서 정보는 3단계 순서에 따라 치아 이랑 영역에서 통계적인 편차를 적용하여 호감도 조정에 따라서 반응 패턴으로 이진화 되고, CA3 영역에서 자기 연상 메모리를 하여 패턴이 재구성이 된다. CA3의 정보를 받는 CAI영역에서는 모듈레이터가 적용되는 신경망에 의해 장기기억 인식에 이용되는 연결n강도의 수렴이 빠르게 학습된다. MHLA의 성능을 측정하기 위하여 포즈 및 표정과 화질 상태에 따라 분류된 얼굴 영상에 PCA(Principal Component Analysis)를 적용하여 특정 벡터들을 계산하 MHLA로 학습한 후, 인식률을 확인 하였다. 실험 결과, 제안한 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.