• 제목/요약/키워드: 얼굴 특징

검색결과 1,152건 처리시간 0.024초

히스토그램과 영역분할 기법을 이용한 얼굴추출에 관한 연구 (A Study on The Face Extraction Using Histogram and Region Segmentation)

  • 황훈;최철;최영관;조성민;박장춘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.633-636
    • /
    • 2002
  • 기존에 얼굴인식이나 얼굴영역을 추출하는 방법들은 대부분 얼굴의 외곽선은 고려하지 않은 상태에서 얼굴의 특징인 눈, 코, 입 부분만을 추출하는 경우가 많아 정확한 얼굴을 추출하기가 어려웠다. 본 논문에서는 얼굴의 색상과 영역분할 기법(Region Segmentation technique)을 함께 사용해서 얼굴부분과 얼굴의 특징을 추출하여 보다 정확한 얼굴 부분을 분할하고자 한다. 얼굴추출방법을 대표색상 추출과정과 실제 영역을 분할하여 얼굴부분을 추출하는 과정으로 나누어 히스토그램을 이용하여 대표색상을 추출한 후, 영역분할 기법을 이용하여 대표색상을 포함하고 있는 영역에 대해 얼굴이라는 가정을 배제하고, 이미지들을 객체(Object)화 하여 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다.

  • PDF

얼굴교체 시스템을 위한 적응적 블렌딩 방법 (Adaptive Face Blending for Face Replacement System)

  • 장성걸;김창섭;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.133-135
    • /
    • 2018
  • 본 논문에서는 포즈에 적응적인 가중치 맵 (weight map)에 기반한, 얼굴 교체시스템을 위한 블렌딩 기법을 제안한다. 우선 얼굴교체를 진행하기 위해 목표얼굴이 들어있는 영상으로부터 실시간으로 얼굴의 기하학적 특징점 (land mark)을 검출한다. 다음 검출된 특징점의 분포에 따라 얼굴영역에 대해 삼각화 (triangulation)를 진행한다. 참조영상에 대해서도 같은 과정을 적용하고 대응되는 영역끼리 워핑 (warping) 변환을 시키면 목표 얼굴과 같은 포즈의 참조얼굴을 얻을 수 있다. 그 다음 두 영상의 피부색 톤을 일치시켜주고 안면교체를 진행한다. 하지만 교체된 영역과 목표 얼굴 사이에 부자연스러운 경계가 발생하게 되는데 블렌딩 기법을 통해 이런 경계를 제거한다. 본 논문에서는 사전에 표준얼굴형태모델을 이용하여 정면 얼굴의 가중치 맵을 생성하고, 표준얼굴형태모델과 목표 얼굴사이 변환관계를 이용하여 포즈에 대응되는 가중치지도를 생성하였다. 이렇게 얻어진 가중치 맵은 일관되게 정해진 가중치 맵에 비해 포즈변화에 적응적으로 대처할 수 있어 보다 자연스러운 얼굴교체 효과를 얻을 수 있다.

  • PDF

SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구 (Face Recognition based on SURF Interest Point Extraction Algorithm)

  • 강민구;추원국;문승빈
    • 전자공학회논문지CI
    • /
    • 제48권3호
    • /
    • pp.46-53
    • /
    • 2011
  • 본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)를 이용한 얼굴 인식 방법을 소개한 다. 일반적으로, SURF를 이용한 물체 인식은 특징점 추출 및 정합만을 수행하지만, 본 논문에서 제안하는 SURF를 이용한 얼굴 인식 방법은 특징점 추출 및 정합뿐만 아니라 얼굴 영상 회전 및 특징점 검증을 추가로 수행한다. 얼굴 영상 회전은 특징점의 수를 증가시키기 위해 수행되며, 특징점 검증은 정확하게 정합된 특징점들을 찾기 위해 수행된다. 비록 본 논문에서 제안한 SURF를 이용한 얼굴 인식 방법은 PCA를 이용한 방법보다 연산 시간이 더 요구되었지만, 인식률은 보다 더 높았다. 이러한 실험 결과를 통해, 특징점 추출 알고리즘도 얼굴 인식에 적용할 수 있음을 확인할 수 있었다.

색상 정보를 이용한 자동 독화 특징 추출 (Automatic Speechreading Feature Detection Using Color Information)

  • 이경호;양룡;이상범
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권6호
    • /
    • pp.107-115
    • /
    • 2008
  • 얼굴 특징들을 추출하는 것은 자동 독화나 휴먼컴퓨터 인터페이스, 얼굴 인식, 얼굴 이미지 테이터베이스 관리 등에서 매우 중요하다. 본 논문에서는 영상에 존재하는 다양한 색상 정보를 이용하여 얼굴 영역에서 자동 독화를 위한 특징점이 추출되도록 하였다. 얼굴의 특징들은 휘도와 채도 성분으로 인하여 다양한 색 공간에서 다양한 표현 값을 갖는다. 이를 이용하여 각 표현 값들을 증폭하거나 축소, 대비시킴으로서 얼굴 특징들을 추출되게 하였다. 눈과 코, 안쪽 입의 외곽선, 이의 외곽선을 찾았고 실험하여 좋은 결과를 얻었다.

  • PDF

3D Face Recognition using Local Depth Information

  • 이영학;심재창;이태홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.818-825
    • /
    • 2002
  • 얼굴의 깊이 정보는 얼굴 인식에서 가장 중요한 요소이다. 3차원 얼굴 영상은 깊이 정보를 잘 나타내므로 얼굴의 깊이 값을 비교하는데 아주 유용하다. 얼굴 전체에 대한 처리는 많은 계산량과 데이터 량을 포함해야 하는 문제점이 있다. 따라서 본 논문에서는 얼굴의 국부적인 영역들에 대한 3차원 깊이 값을 이용하여 인식하였다. 3D 레이저 스캐너로 입력된 3차원 얼굴 영상으로부터 어떤 깊이에 있는 등고선 영역을 추출한 후, 이를 영역별로 취하면 국부적인 얼굴 깊이에 대한 특징을 잘 반영하게 된다. 얼굴의 가장 중심인 코를 기준점으로 깊이 영역에 대한 등고선 영역을 추출하며, 얼굴의 깊이를 고려한 국부적 깊이 정보를 다중 특징 벡터를 이용하여 얼굴을 인식한다. 다중 특징 벡터는 벡터 수가 적으면서 얼굴의 지역적 깊이 특성을 잘 나타내므로 간단한 방법으로 높은 인식률을 얻을 수 있었다.

아이겐포인트를 이용한 표정 인식 (Facial expression recognition using eigen-points)

  • 홍성희;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.817-819
    • /
    • 2004
  • 본 논문에서는 사람의 얼굴표정을 구분하기 위해서 무표정 영상으로부터 18개의 특징점을 찾고, 그 특징점 간의 거리를 템플릿으로 이용하는 방법을 연구하였다. 얼굴표정인식을 위해 정의된 기본 템플릿과 입력 표정 영상에서의 특징정 간의 상대적인 거리의 차이와 특징점의 좌표변위 차이를 이용하여 표정을 구분하도록 하였다. 각 테스트 표정영상의 특징점은 주요 얼굴요소로부터 아이겐포인트(eigen-point)를 자동으로 추출하였다. 표정 인식은 신경망 학습을 통해서 기쁨, 경멸, 놀람, 공포 슬픔 등 5가지로 나누어 실험하였고, 신경망의 인식 결과와 사람의 인식 결과를 통해서 비교한 결과, 72%의 인식성능을 보여주었다.

  • PDF

간단한 특징에 기반한 얼굴 검출 (The Real-Time Face Detection based on Simple Feature)

  • 임옥현;이우주;이경일;이배호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2004년도 춘계학술발표대회논문집
    • /
    • pp.247-250
    • /
    • 2004
  • 본 논문에서는 간단한 사각형 특징과 계층적 분류기를 이용하여 실시간으로 얼굴을 검출하는 방법을 제안하고자 한다. 우리는 다섯 가지 형태의 기본적인 특징 모델을 바탕으로 20*20 크기의 훈련 영상에 적용하여 많은 초기 특징 집합을 구성하였다. AdaBoost(Adaptive Boosting) 알고리즘을 이용한 학습을 통하여 초기 특징 집합 중에서 얼굴 검출하는데 강인한 집합들만을 선택하였다. 제안된 알고리즘을 이용한 실제 실험에서 90% 이상의 높은 검출율을 확인하였고 초당 10프레임의 실시간 검출에도 성공하였다.

  • PDF

대표적 얼굴 특징점 추출 방법에 대한 비교분석 (Comparition between Two Facial Feature Detection Methods)

  • 신길수;김용국
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.489-493
    • /
    • 2006
  • 이 논문에서는 커널 에지 방식의 얼굴의 특징점을 추출하는 방법과 Adaboost를 이용한 얼굴의 특징점을 추출하는 방법에 대해서 비교 한다. 커널 에지를 이용한 방법은 10개의 커널을 이용하여 추출된 에지를 이용하여 얼굴의 특징점을 추출해 낸다. 커널의 개수를 줄여 사용한다면 실시간에 가능하고, 정확성을 높이기 위해서는 이미지의 전처리 단계에서 자극적인 효과를 준다면 정확성 또한 높아 질 것이다. 반면에 Adaboost를 이용한 방법은 각각의 특징점들을 오프라인 상에서 학습을 하고 온라인상에서 실시간으로 특징점을 추출하는 방법을 사용하였다. 각 각의 학습과정에 있어서 positive, negative 이미지를 더 많이 사용한다면 정확성이 더 높아질 것이다. 한 가지 주목할 만 한 점은 입과 같은 특징점을 추출하기 어려운 영역에서도 높은 정확성을 보였다.

  • PDF

코 형상 마스크를 이용한 3차원 얼굴 영상의 특징 추출 (Facial Feature Extraction using Nasal Masks from 3D Face Image)

  • 김익동;심재창
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.1-7
    • /
    • 2004
  • 본 논문은 3차원 얼굴 영상을 이용한 얼굴 인식에 있어서, 정규화 과정에 사용될 얼굴의 특징 영역을 추출하는 방법을 제안한다. 3차원 얼굴 영상은 조명의 변화에 상관없이 얼굴의 특징 분석이 가능하고, 이를 이용한 얼굴 인식이 가능하다. 그러나 입력된 형상의 자세에 따라 회전, 기울어진 정도, 그리고 좌우로 움직인 정도가 다르다. 이런 특성을 고려하지 않고 추출된 특징들은 잘못된 인식 결과를 초래할 수 있다. 이런 이유로 입력에서의 오류들을 바로잡는 정규화 과정이 필요하다. 정규화 과정에서는 얼굴의 기하학적인 특징인 눈, 코, 입 등을 이용하는 것이 일반적이다. 이들 중, 코는 3차원 얼굴 영상에서 두드러진 특징이 될 수 있다. 본 연구에서는 코의 실제 형상과 유사한 긴 추출 마스크를 사용하여 입력된 영상으로부터 코를 추출하는 방법을 제안한다.

다양한 조명 환경에 강인한 실시간 얼굴확인 기법 (Robust Real-time Face Detection Scheme on Various illumination Conditions)

  • 김수현;한영준;차형태;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.821-829
    • /
    • 2004
  • 얼굴인식기술이 인증 및 보안을 위한 도구로 활용되고 있지만 입력영상의 상태, 즉 조명환경에 따라 적용할 수 있는 범위가 제약적일 수밖에 없다. 본 논문에서는 이러한 제약을 최소화하기 위해 측면과 후면조명 등의 불규칙한 조명환경에서 획득한 입력영상에서 얼굴의 특징을 구분하여 얼굴영상임을 확인하는 방법을 제안한다. 제안된 방법은 에지차영상을 얼굴특징이 두드러지도록 전처리한 후, X와 Y축의 프로파일을 이용하여 얼굴영역을 예측하고 영역 내의 밝기분포를 이용하여 눈, 코, 입 등의 얼굴특징이 놓일 수 있는 수평영역을 분리한다. 수평영역들은 눈, 코, 입을 포함할 수 있는 영역의 그룹으로 나누어지고 각 그룹에서 코와 입, 그리고 눈의 순서로 특징들을 검출한다. 얼굴여부는 검출된 특징들의 구조적인 관계를 검증하여 확인한다. 제안된 알고리즘은 배경색상이나 조명의 방향과 색상 등으로 인해 얼굴의 형태와 특징이 결여된 입력영상에서도 매우 안정적으로 적용됨을 실험을 통해 확인하였다.