기존 얼굴 인식 알고리즘은 단일 특징 기반의 전역적 방식이었다. 정확도를 향상시키기 위해 복수의 특징점을 이용하는 방법들이 제안되었으나 이는 알고리즘의 복잡도가 증가하고, 계산 속도가 느린 단점이 있다. 본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)를 이용한 얼굴 인식 방법을 제안한다. SURF 를 통해 기술어를 추출하고, Gabor 특징과 LBP 특징을 이용해 해당 특징점에서 기술어를 추출함으로써 기존 알고리즘보다 경량화할 수 있고, 수행시간을 줄일 수 있다. 잘 알려진 ORL 데이터베이스에서의 실험에서 제안한 방법이 정합시간을 포함한 수행 시간에서 약 16%의 감소를 보였고, 정확도 또한 약 34% 향상되었다.
얼굴 인식은 현재 많은 연구가 활발히 진행되고 있는 분야이다. 하지만, 이에 따른 많은 문제점들이 선결되어야 하는 실정이다. 우선, 영상 취득과정에서 생기는 다양한 조명 변화와 카메라의 위치 변화를 고려하여 대상 얼굴을 인식해야 한다. 본 논문에서는 PC 카메라 및 주민등록증에 있는 사진을 스캔하여 얼굴 특징점을 정확하고 빠른 계산 시간 안에 찾을 수 있는 새로운 방법을 제시한다. RGB 색공간을 YUV로 변환하여 Y성분을 히스토그램 균등화 시켜 휘도에 관계없이 얼굴 피부색을 추출한 후 YUV의 V성분을 변형한 V' 성분을 이용하여 얼굴의 특징점을 찾는 방법이다. 실험결과 주민등록증 사진과 PC카메라에서 입력받은 얼굴 영상이 오류 없이 추출됨이 관찰되었다.
본 논문에서능 2차원 칼라 동영상으로부터 3차원 개인 얼굴 모델을 자동 생성하는 효율적인 방법을 다루었다. 복잡한 배경이 포함된 영상에서 얼굴 영역을 안정적으로 추출하기 위하여 피부 색상 분포에 근거한 색상 움직임 추출 방법을 이용하였다. 검출된 얼굴 영역 내에서 색상 정보과 경계선 정보를 활용하여, MPEG-4의 SNHC(Synthetic-Natural Hybrid Coding) 에서 제안하고 있는 개개인의 얼굴 특성을 표현하는 31개의 얼굴 특징점 파라메타(Facial Description Rarameter: FDP)를 자동 추출하였다. 추출된 2차원 얼굴 특징점을 1038개의 삼각형 메쉬로 이루어진 3차원 일반 얼굴 모델(Generic model)에 적용시켜 변형함으로써 개개인의 얼굴에 해당하는 모델을 자동 생성하였다. 제안하는 알고리듬은 컬러 동영상에서 배경의 복잡성, 얼굴 크기 등에 상관없이 정면상에 가까운 경우 안정적인 특징점을 추출하였으며, 펜티엄 PC에서 약 2초 이내에 개개인의 얼굴 모습에 유사한 얼굴 모델을 생성할 수 있었다.
시선 위치 추적이란 사용자가 모니터 상의 어느 지점을 쳐다보고 있는 지를 파악해 내는 기술이다. 시선 위치를 파악하기 위해 본 논문에서는 2차원 카메라 영상으로부터 얼굴 영역 및 얼굴 특징점을 추출한다. 초기에 모니터상의 3 지점을 쳐다볼 때 얼굴 특징점들은 움직임의 변화를 나타내며, 이로부터 카메라 보정 및 매개변수 추정 방법을 이용하여 얼굴특징점의 3차원 위치를 추정한다. 이후 사용자가 모니터 상의 또 다른 지점을 쳐다볼 때 얼굴 특징점의 변화된 3차원 위치는 3차원 움직임 추정방법 및 아핀변환을 이용하여 구해낸다. 이로부터 변화된 얼굴 특징점 및 이러한 얼굴 특징점으로 구성된 얼굴평면이 구해지며, 이러한 평면의 법선으로부터 모니터 상의 시선위치를 구할 수 있다. 실험 결과 19인치 모니터를 사용하여 모니터와 사용자까지의 거리를 50∼70cm정도 유지하였을 때 약 2.08인치의 시선위치에러 성능을 얻었다. 이 결과는 Rikert의 논문에서 나타낸 시선위치추적 성능(5.08cm 에러)과 비슷한 결과를 나타낸다. 그러나 Rikert의 방법은 모니터와 사용자 얼굴까지의 거리는 항상 고정시켜야 한다는 단점이 있으며, 얼굴의 자연스러운 움직임(회전 및 이동)이 발생하는 경우 시선위치추적 에러가 증가되는 문제점이 있다. 동시에 그들의 방법은 사용자 얼굴의 뒤 배경에 복잡한 물체가 없는 것으로 제한조건을 두고 있으며 처리 시간이 상당히 오래 걸리는 문제점이 있다. 그러나 본 논문에서 제안하는 시선 위치 추적 방법은 배경이 복잡한 사무실 환경에서도 사용가능하며, 약 3초 이내의 처리 시간(200MHz Pentium PC)이 소요됨을 알 수 있었다.
본 논문에서는 사람의 얼굴표정을 구분하기 위해서 무표정 영상으로부터 18개의 특징점을 찾고, 그 특징점 간의 거리를 템플릿으로 이용하는 방법을 연구하였다. 얼굴표정인식을 위해 정의된 기본 템플릿과 입력 표정 영상에서의 특징정 간의 상대적인 거리의 차이와 특징점의 좌표변위 차이를 이용하여 표정을 구분하도록 하였다. 각 테스트 표정영상의 특징점은 주요 얼굴요소로부터 아이겐포인트(eigen-point)를 자동으로 추출하였다. 표정 인식은 신경망 학습을 통해서 기쁨, 경멸, 놀람, 공포 슬픔 등 5가지로 나누어 실험하였고, 신경망의 인식 결과와 사람의 인식 결과를 통해서 비교한 결과, 72%의 인식성능을 보여주었다.
얼굴 인식은 여러 분야에서의 활발한 연구를 통해 많은 발전이 있었고, 현재도 활발한 연구가 진행되고 있다. 최근 들어 물체 인식에 주로 사용되어온 특징점 추출 알고리즘이 얼굴 인식에도 적용되고 있다. 본 논문은 대표적인 특징점 추출 알고리즘인 SURF를 이용한다. 사람은 얼굴의 형태 및 구조가 유사하므로 물체를 인식하는 경우보다 분별력이 떨어지기 때문에 SURF를 이용한 얼굴인식의 정확도는 낮은 편이다. 이를 개선하고자 본 논문에서는 SURF를 통해 추출한 특징점에서 Gabor 웨이블릿 변환을 사용해 기술어를 추출하는 얼굴 인식 방법을 제안한다. 실험 결과에서 제안하는 방법이 기존 SURF 기반의 얼굴 인식에 비해 정확도가 약 23% 향상된 것을 확인하였다.
본 논문에서는 웹상에서 자신을 대신하는 아바타 제작시 본인의 얼굴과 닮은 얼굴을 생성하기 위해 사진으로부터 개인의 특징정보를 추출하는 방법과 추출된 특징정보에 따라 해당하는 이목구비를 준비된 분류기준에 의해 특정 클래스로 분류해 내는 방법을 제안한다. 특징정보 추출은 눈, 코, 입, 턱선으로 나누어 진행되어졌으며, 각 이목구비의 특징점과 분류기준을 각각 제시하였다. 추출 된 특징정보들은 전문 디자이너에 의해 그려진 이목구비 이미지들과 유사도를 계산하는데 사용되었으며, 여기서 가장 유사한 이미지를 턱선 벡터이미지에 합성하여 아바타 얼굴을 얻어낼 수 있었다.
본 논문에서는 두 대의 카메라 영상으로부터 얼굴의 포즈를 추정하는 방법을 제안한다. 제안된 방법은 먼저 두 얼굴 영상으로부터 대응되는 눈썹, 눈, 입의 특징점을 추출한 다음, 스테레오 비전의 삼각법에 의해 특징점에 대한 3차원 위치를 계산한다. 그 다음에는 특징점으로 부터 삼각형을 생성하고 그 삼각형에 수직 방향을 계산함으로써 얼굴의 포즈를 계산한다. 계산된 얼굴의 포즈를 3D 얼굴 모델에 적용해 본 결과 본 논문에서 제안된 방법이 정확한 얼굴 포즈를 추정할 수 있음을 알 수 있었다.
본 논문에서는 컬러 비디오 시퀀스 상에서 눈과 입에 해당하는 얼굴 특징점을 고속으로 추출하는 방법을 제안한다. 자유로운 움직임을 갖는 얼굴 영역을 안정적으로 추출하기 위해 얼굴 색상 분포를 이용한 색상 변환 영상에 움직임 검출 기법을 적용하여 움직이는 살색 부분만을 효율적으로 검출하는 색상 움직임 개념을 사용하였다. 움직임 정보는 살색의 가능성 정도에 따라 가중치가 주어지며 화소 단위의 움직임 여부를 결정하는 문턱값도 살색의 가능성 정도에 따라 적응적으로 결정된다. 눈의 색상분포와 형태소 연산자를 사용한 움직임 살색 영역에서 눈 후보 영역을 추출하고 눈과 눈썹의 상호 위치 관계를 이용하여 눈의 영역을 최종 결정한다. 입의 영역은 눈의 위치를 기준으로 입 후보 영역을 정하고 색상 히스토그램을 이용하여 입의 영역을 검출한다. 찾아진 눈과 입의 영역에서 정확한 특징점의 위치를 구하기 위해 PCA (Principal Component Analysis)를 사용하였다. 실험 결과 복잡한 배경, 개인적인 편차, 얼굴의 방향과 크기 등에 영향을 받지 않고 고속으로 정확한 얼굴의 특징점을 추출할 수 있었다.
얼굴영역을 추출하기 위한 방법은 크게 얼굴의 지형적 특징추출에 기반한 방법과 얼굴형판 정합에 기반한 방법으로 분류할 수 있다. 일반적으로 복잡한 배경의 영상에서는 형판정합 방법이 우수하나, 형판의 대표성을 부여하기가 어렵다는 점이 문제시되어 왔다. 본 논문에서는 얼굴영역을 추출하기 위하여 복잡한 얼굴패턴을 몇 개의 주성분 값으로 표현할 수 있는 Hotelling변환 과정을 이용하여 얼굴형판을 생성하고 이를 적용하여 얼굴의 크기, 영상의 명암, 얼굴의 위치에 무관하게 얼굴영역을 추출한다. 또한 휴리스틱한 임계치를 이용하여 두 사람 이상의 얼굴영역을 추출하고 기울어진 얼굴영역을 추출하기 위한 방법도 제시한다. 실험을 통하여 다양한 입력영상에 대한 추출 결과와 고유얼굴에 기반한 방법의 특징을 살펴 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.