• 제목/요약/키워드: 얼굴 특징점 추출

검색결과 181건 처리시간 0.034초

FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원 (Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets)

  • 신영숙;이수용;이일병;정찬섭
    • 인지과학
    • /
    • 제11권2호
    • /
    • pp.53-58
    • /
    • 2000
  • 본 논문은 FCM 군집화 알고리즘을 사용하여 표정영상에서 특징점들을 추출한 후 추출된 특징점으로부터 Gabor 웨이브렛들을 이용하여 표정영상의 국소영역을 복원한다. 얼굴의 특징점 추출은 두단계로 이루어진다. 1단계는 이차원 Gabor 웨이브렛 계수 히스토그램의 평균값을 적용하여 얼굴의 주요 요소성분들의 경계선을 추출한 후, 2단계에서는 추출된 경계선 정보로부터 FCM 군집화 알고리즘을 사용하여 얼굴의 주요 요소성분들의 최종적인 특징점들을 추출한다. 본 연구에서는 FCM 군집화 알고리즘을 이용하여 추출된 적은 수의 특징점들 만으로도 표정영상의 주요 요소들을 복원할 수 있음을 제시한다. 이것은 인간의 얼굴 표정인식 뿐만아니라 물체인식에도 적용되어질 수 있다.

  • PDF

실시간 얼굴 특징 점 추출을 위한 색 정보 기반의 영역분할 및 영역 대칭 기법 (Real-Time Face Extraction using Color Information based Region Segment and Symmetry Technique)

  • 최승혁;김재경;박준;최윤철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.721-723
    • /
    • 2004
  • 최근 가상환경에서 아바타의 활용이 빠르게 증가하면서 아바타 애니메이션에 대한 연구가 활발히 진행되고 있다. 특히 아바타의 사람과 같은 자연스러운 얼굴 애니메이션(Facial Animation)은 사용자에게 아바타가 살아 있는 듯한 느낌(Life-likeness)과 사실감(Believability)을 심어주어 보다 친숙한 인터페이스로 활용될 수 있다. 이러한 얼굴 애니메이션 생성을 위해 얼굴의 특징 점을 추출하는 기법이 끊임없이 이루어져 왔다. 그러나 지금까지의 연구는 실시간으로 사람 얼굴로부터 모션을 생성하고 이를 바로 3D 얼굴 모델에 적용 및 모션 라이브러리를 구축하기 위한 최적화된 알고리즘 개발에 대한 연구가 미흡하였다. 본 논문은 실제 사랑 얼굴 모델로부터 실시간으로 특징 점 인식을 통한 애니메이션 적용 및 라이브러리 생성 기법에 대친 제안한다. 제안 기법에서는 빠르고 정확한 특징 점 추출을 위하여 색 정보를 가공하여 얼굴 영역을 추출해내고 이를 영역 분할하여 필요한 특징 점을 추출하였으며, 자연스러운 모션 생성을 위하여 에러 발생 시 대칭점을 이용한 복구 알고리즘을 개발하였다. 본 논문에서는 이와 같은 색 정보 기반의 영역분할 및 영역 대칭 기법을 제시하여 실시간으로 끊김이 없고 자연스러운 얼굴 모션 라이브러리를 생성 및 적용하였다.

  • PDF

표정 인식을 위한 얼굴의 표정 특징 추출 (Facial Expression Feature Extraction for Expression Recognition)

  • 김영일;김정훈;홍석근;조석제
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.537-540
    • /
    • 2005
  • 본 논문에서는 사람의 감정, 건강상태, 정신상태등 다양한 정보를 포함하고 있는 웃음, 슬픔, 졸림, 놀람, 윙크, 무표정 등의 표정을 인식하기 위한 표정의 특징이 되는 얼굴의 국부적 요소인 눈과 입을 검출하여 표정의 특징을 추출한다. 표정 특징의 추출을 위한 전체적인 알고리즘 과정으로는 입력영상으로부터 칼라 정보를 이용하여 얼굴 영역을 검출하여 얼굴에서 특징점의 위치 정보를 이용하여 국부적 요소인 특징점 눈과 입을 추출한다. 이러한 특징점 추출 과정에서는 에지, 이진화, 모폴로지, 레이블링 등의 전처리 알고리즘을 적용한다. 레이블 영역의 크기를 이용하여 얼굴에서 눈, 눈썹, 코, 입 등의 1차 특징점을 추출하고 누적 히스토그램 값과 구조적인 위치 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확한 눈과 입을 추출한다. 표정 변화에 대한 표정의 특징을 정량적으로 측정하기 위해 추출된 특징점 눈과 입의 눈과 입의 크기와 면적, 미간 사이의 거리 그리고 눈에서 입까지의 거리 등 기하학적 정보를 이용하여 6가지 표정에 대한 표정의 특징을 추출한다.

  • PDF

표정변화에 따른 얼굴 표정요소의 특징점 추적 (Tracking of Facial Feature Points related to Facial Expressions)

  • 최명근;정현숙;신영숙;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.425-427
    • /
    • 2000
  • 얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.

  • PDF

얼굴 특징점의 이동자취 추출 시스템의 구현 (Implementation of facial feature trajectory finding system)

  • 정재영;이재호;김문현
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1995년도 제4회 멀티미디어 산업기술 학술대회 논문집
    • /
    • pp.183-186
    • /
    • 1995
  • 본 논문에서는 연속적인 움직임을 가지는 얼굴 영상의 시퀀스에서 미리 정의한 몇개 특징점의 프레임 단위의 이동자취를 구하는 시스템을 구현하였다. 이를 위하여, 우선 얼굴영상에서의 특징점의 정의 및 그 추출과정을 보인다. 프레임간의 특징점들은 관성력으로 인하여 그 속도벡터가 급격히 변화할 수 없다는 평탄화 성질(smoothness)과, 이동후 다른 특징점들에 비해 근거리에 위치한다는 근접성 (proximity)을 가정하여 대응되는 쌍들을 구한다. 구현된 시스템을 실질적인 얼굴 영상의 시퀀스에 대해 실험하고, 그 결과를 보인다.

  • PDF

평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적 (Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function)

  • 김기상;김계영;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제8권9호
    • /
    • pp.1-9
    • /
    • 2008
  • 일반적으로 얼굴 추적 시 움직임에 강건한 Lucas-Kanade 추적 방법이 많이 사용된다. 그러나 얼굴이 회전되었을 경우, 정확한 얼굴 영역 검출이 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 Lucas-Kanade 추적 방법에 평가함수를 도입하여 회전에 강건한 자동 얼굴 영역 검출 및 추적 방법을 제안하였다. 얼굴영역은 색상정보를 이용하여 자동으로 추출하였으며, Harris 코너 추출 알고리즘으로 특징점을 추출하였다. 폐색된 특징점을 구분하기위하여 특징점마다 기존 특징점과 새로운 특징점과의 차이 값을 계산한다. 만약, 특징점이 폐색되었을 경우, 잡음을 제거하기 위하여 제거하며 특징점의 개수가 일정 임계값 이하일 경우, 얼굴 영역을 다시 검출하였다. 실험결과를 통하여 얼굴 영역이 회전되었을 경우, 기존의 Lucas-Kanade 추적 방법보다 더 좋은 결과를 확인하였다.

적은 수의 특징점을 이용한 얼굴 사진의 3차원 모델링 시스템 (Face Picture the 3D Modeling System Using a Small Set of Feature Points)

  • 김종찬;박경숙;정선인;허영남;김응곤
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.628-630
    • /
    • 2001
  • 사용자에게 친근감 있는 인터페이스를 제공하는 얼굴 모델링에 대한 연구가 활발히 진행 중이다. 본 논문에서는 기존 방법인 3차원 스캐너가 카메라를 이용하지 않고 얼굴의 정면상과 측면상의 사진을 이용하여 크기와 배경의 복잡성에 상관없이 일반적인 특징점을 추출하여 삼각형 메쉬로 구성된 표준 모델을 생성하고 이를 이용해서 3차원 얼굴의 형태를 생성하는 시스템을 제안한다. 추출된 특징점은 각개인의 얼굴 형태에 맞게 변형함으로서 좀더 현실적인 3차원 얼굴 모델링을 제공한다.

  • PDF

이동로봇에서의 2D얼굴 영상을 이용한 사용자의 감정인식 (Emotion Recognition of User using 2D Face Image in the Mobile Robot)

  • 이동훈;서상욱;고광은;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.131-134
    • /
    • 2006
  • 본 논문에서는 가정용 로봇 및 서비스 로봇과 같은 이동로봇에서 사용자의 감정을 인식하는 방법중 한가지인 얼굴영상을 이용한 감정인식 방법을 제안한다. 얼굴영상인식을 위하여 얼굴의 여러 가지 특징(눈썹, 눈, 코, 입)의 움직임 및 위치를 이용하며, 이동로봇에서 움직이는 사용자를 인식하기 위한 움직임 추적 알고리즘을 구현하고, 획득된 사용자의 영상에서 얼굴영역 검출 알고리즘을 사용하여 얼굴 영역을 제외한 손과 배경 영상의 피부색은 제거한다. 검출된 얼굴영역의 거리에 따른 영상 확대 및 축소, 얼굴 각도에 따른 영상 회전변환 등의 정규화 작업을 거친 후 이동 로봇에서는 항상 고정된 크기의 얼굴 영상을 획득 할 수 있도록 한다. 또한 기존의 특징점 추출이나 히스토그램을 이용한 감정인식 방법을 혼합하여 인간의 감성 인식 시스템을 모방한 로봇에서의 감정인식을 수행한다. 본 논문에서는 이러한 다중 특징점 추출 방식을 통하여 이동로봇에서의 얼굴 영상을 이용한 사용자의 감정인식 시스템을 제안한다.

  • PDF

원근 움직임 모델을 이용한 특징 공간 상에서의 효율적인 얼굴 영역 추적 (Efficient face tracking using perspective motion model in feature space)

  • 최송하;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.521-523
    • /
    • 1999
  • 본 논문에서는 입력 영상 열에서 얼굴 영역을 추출하고, 영역 내 특징점들의 움직임 벡터를 원근 움직임 모델에 정합하여 얼굴 영역을 추적하는 새로운 방법을 제안한다. 제안된 방법은 계층적 형판정합을 이용하여 얼굴 영역을 추출하고, 해당 영역에서 DoG 반응의 국부최대치를 찾아 특징점을 구한다. 그리고 최소제곱추정기법을 이용하여 각 특징점에서 얻어진 움직임 벡터를 원근 모델에 정합한다. 제안된 방법은 선별된 특징점에서 움직임 벡터를 계산함으로써 연산량을 줄일 수 있었고, 원근 움직임 모델을 이용함으로써 잡영에 강한 특성을 보인다.

  • PDF

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.10-10
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.