• Title/Summary/Keyword: 얼굴 특징점 추출

Search Result 181, Processing Time 0.026 seconds

Face Recognition based on SURF Interest Point Extraction Algorithm (SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구)

  • Kang, Min-Ku;Choo, Won-Kook;Moon, Seung-Bin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.46-53
    • /
    • 2011
  • This paper proposes a SURF (Speeded Up Robust Features) based face recognition method which is one of typical interest point extraction algorithms. In general, SURF based object recognition is performed in interest point extraction and matching. In this paper, although, proposed method is employed not only in interest point extraction and matching, but also in face image rotation and interest point verification. image rotation is performed to increase the number of interest points and interest point verification is performed to find interest points which were matched correctly. Although proposed SURF based face recognition method requires more computation time than PCA based one, it shows better recognition rate than PCA algorithm. Through this experimental result, I confirmed that interest point extraction algorithm also can be adopted in face recognition.

Fuzzy-Model-based Emotion Recognition Using Advanced Face Detection (향상된 얼굴 인식 기술을 이용한 퍼지 모델 기반의 감성인식)

  • Yoo, Tae-Il;Kim, Kwang-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2083-2084
    • /
    • 2006
  • 본 논문에서는 조명에 변화에 강인하고 기존의 퍼지 색상 필터보다 정확하고 빠른 얼굴 감지 알고리즘 이용하여 얼굴을 인식하고 얼굴로부터 특징점(눈, 눈썹, 입)틀을 추출하고 추출된 특징점을 이용하여 감성을 판별하는 방법을 제안한다. 향상된 얼굴 인식 기술이란 퍼지 색상 필터의 단점이 영상의 크기와 성능에 따라 처리속도가 느려지는 것을 보완하기 위하여 최소한의 규칙을 사용하여 얼굴 후보 영역을 선별 적용하여 얼굴영역을 추출하는 기법을 말한다. 이렇게 추출된 얼굴영역에서 감정이 변화 할 때 가장 두드러지게 변화를 나타내는 눈, 눈썹 그리고 입의 특징점을 이용하여 감성을 분류한다.

  • PDF

3D Feature Point Based Face Segmentation in Depth Camera Images (깊이 카메라 영상에서의 3D 특징점 기반 얼굴영역 추출)

  • Hong, Ju-Yeon;Park, Ji-Young;Kim, Myoung-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.454-455
    • /
    • 2012
  • 깊이 카메라에서 입력 받은 사용자의 얼굴 데이터에 morphable 모델을 fitting하여 실제 얼굴과 가까운 3D 얼굴 모델을 생성하기 위해서는 먼저 깊이 영상으로부터의 정확한 얼굴 영역 추출이 필요하다. 이를 위해 얼굴의 특징점을 기반으로 얼굴 영역 추출을 시도한다. 먼저 원본 깊이 영상을 보정하고, 컬러 영상으로부터 얼굴과 눈, 코의 영역을 탐색한 후 이를 깊이 영상에 대응시켜 눈, 코, 턱의 3차원 위치를 계산한다. 이렇게 결정된 얼굴의 주요 특징점들을 시작으로 영역을 확장함으로써 영상의 배경으로부터 얼굴 영역을 분리한다.

A Study on the Feature Point Extraction and Image Synthesis in the 3-D Model Based Image Transmission System (3차원 모델 기반 영상전송 시스템에서의 특징점 추출과 영상합성 연구)

  • 배문관;김동호;정성환;김남철;배건성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.767-778
    • /
    • 1992
  • Is discussed. A method to extract feature points and to synthesize human facial images In 3-Dmodel-based ceding system, faciai feature points are extracted automatically using some image processing techniques and the known knowledge for human face. A wire frame model matched to human face Is transformed according to the motion of point using the extracted feature points. The synthesized Image Is produced by mapping the texture of initial front view Image onto the trarnsformed wire frame. Experinent results show that the synthesitzed image appears with little unnaturalness.

  • PDF

A Study On Face Feature Points Using Active Discrete Wavelet Transform (Active Discrete Wavelet Transform를 이용한 얼굴 특징 점 추출)

  • Chun, Soon-Yong;Zijing, Qian;Ji, Un-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.7-16
    • /
    • 2010
  • Face recognition of face images is an active subject in the area of computer pattern recognition, which has a wide range of potential. Automatic extraction of face image of the feature points is an important step during automatic face recognition. Whether correctly extract the facial feature has a direct influence to the face recognition. In this paper, a new method of facial feature extraction based on Discrete Wavelet Transform is proposed. Firstly, get the face image by using PC Camera. Secondly, decompose the face image using discrete wavelet transform. Finally, we use the horizontal direction, vertical direction projection method to extract the features of human face. According to the results of the features of human face, we can achieve face recognition. The result show that this method could extract feature points of human face quickly and accurately. This system not only can detect the face feature points with great accuracy, but also more robust than the tradition method to locate facial feature image.

Face Recognition Algorithm Using Face Feature Evaluation Function (얼굴특징 평가함수를 이용한 얼굴인식 알고리즘)

  • 김정훈;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.484-487
    • /
    • 2003
  • 본 논문에서는 CCD 카메라로부터 입력된 얼굴영상에서 피부색상 정보를 이용하여 얼굴을 검출하고 얼굴특징자인 눈, 코, 입의 얼굴특징 벡터를 추출한 후, 벡터들로부터 특징 평가함수를 적용하여 개인의 얼굴을 인식하는 알고리즘을 제안하였다. 제안한 논문에서는 입력 영상에서 대하여 얼굴 피부색의 정보와 명암도 정보를 동시에 사용하여 얼굴영역을 검출한 후, 검출한 얼굴 영역에서 특징점인 눈, 코, 입 등을 추출한 다음, 각 특징 점들에 대한 기하학적 위치특성과 상관성을 이용한 얼굴특징 평가함수를 구성하였다. 제안한 알고리즘으로 230 장의 얼굴영상에 대하여 실험에 적용한 결과 얼굴검출 효율과 인식 성능을 개선할 수 있었다.

  • PDF

Feature Extraction of Face Region using YUV Transform (YUV 변환을 이용한 안면 영역의 특징 추출)

  • Chae, Duck-Jae;Choi, Young-Kyoo;Rhee, Sang-Burm
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.641-644
    • /
    • 2002
  • 얼굴 특징점 추출은 현재 많은 연구가 활발히 진행되고 있는 분야로 보안, 인식 등 다양한 응용분야를 갖는다. 본 논문에서는 PC 카메라 및 주민등록증에 있는 사진을 스캔하여 얼굴 특징점을 정확하고 빠른 계산 시간안에 찾을 수 있는 새로운 방법을 제시한다. RGB 색공간을 YUV로 변환하여 Y성분을 히스토그램 균등화 시켜 휘도에 관계없이 얼굴 피부색을 추출한 후 YUV의 V성분을 변형한 V'성분을 이용하여 얼굴의 특징점을 찾는 방법이다. 실험결과 주민등록증 사진과 PC 카메라에서 입력 받은 얼굴 영상이 오류 없이 추출됨이 관찰되었다.

  • PDF

Estimating Facial Feature Position with Matched Filters (Matched Filter를 이용한 얼굴 특징점 위치추출)

  • 황인택;최광남
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.565-567
    • /
    • 2003
  • 이 논문은 Matched Filter 기술을 사용해 얼굴 특징점 위치를 추출하는 연구에 대해서 기술한다. 기본 목표는 얼굴의 서로 다른 8개( 양쪽 눈과 눈썹, 머리선, 코, 입, 턱 )의 부분을 구분할 수 있는 필터들을 개발하는 것이다. 이런 Matched Filter는 Fourier 역변환을 사용해 훈련영상(Training Image)으로부터 얻을 수 있다. 실험평가는 베른대학의 얼굴 데이터베이스에 근거한다. 우리는 여기서 다양한 얼굴의 방향성에 효과적으로 적용할 수 있도록 하는 훈련 영상자료가 무엇인지 알 수 있다. 그리고 안경을 썼을 때 얼굴을 인식할 수 있는 가장 좋은 방법도 알아본다.

  • PDF

Extraction of Facial Feature Component using Section Segmentation of Block-units (블록단위 영역분할을 이용한 얼굴 특징 요소 추출)

  • 김승업;이우범;김욱현
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.97-100
    • /
    • 2000
  • 본 논문에서는 얼굴의 특징 추출 알고리즘을 제안한다. 입력 영상을 이진 영상으로 처리한 후, 얼굴 요소 후보 블록의 면적, 둘레, 원형도, 종횡비를 이용하여 불변하는 눈, 코, 입의 특징 요소를 추출한다. 사람의 얼굴에 대한 특징 요소를 추출하기 위하여 우선 이진 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 얼굴 요소 후보 블록 단위로 면적을 구하고, 윤곽선 추적 방법에 의하여 둘레를 구한 다음 면적, 둘레, 원형도 및 종횡비의 유사도를 구한다 블록의 종합 유사도, 대칭적 거리, 위치의 유사도를 활용하여 눈, 코, 입을 추출한다. 추출된 각 특징 요소간의 거리와 각도를 이용하여 12개의 특징 인수를 구하는 제안 알고리즘을 수행함으로써 얼굴의 특징 인수들을 추출한다. 각 특징점 사이의 거리와 각 거리간의 기울기를 이용하여 100명으로부터 획득한 297개의 원 영상을 대상으로 12개의 특징 파라미터를 추출한 결과 92.93%의 추출 성공률을 보였다. 이러한 결과는 외부 환경의 영향을 덜 받는 눈, 코, 입의 위치 관계의 블록을 근거로 특징 요소를 추출할 수 있도록 제안 알고리즘을 구성하였던 것으로 판단된다.

  • PDF

Extraction of Eye Region in Consideration for Performance and Accuracy (수행 시간과 정확도를 고려한 얼굴 영상의 눈 영역 추출)

  • Jang, Chang-Hyuk;Park, An-Jin;Jung, Kee-Chul
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.269-272
    • /
    • 2006
  • 얼굴 인식의 전처리 단계로써 얼굴의 특징 영역인 눈, 코, 입을 추출하는 방법들이 최근 다양하게 연구되고 있다. 얼굴 영상의 특징 영역을 추출 하는 방법에는 일반적으로 특징 점을 이용한 방법과 에지 정보를 이용한 방법이 있다. 특징 점을 이용한 방법은 높은 정확도를 보이는 반면 느린 수행시간을 보이는 문제점이 있으며, 에지 정보를 이용한 방법은 빠른 수행시간을 보이지만 정확도가 떨어지는 문제점이 있다. 본 논문에서는 정확도와 수행시간을 동시에 향상시킬 수 있는 방법을 제안한다. 빠른 수행 시간을 위해 에지 정보와 에지의 방향성 정보를 이용하여 대략적으로 영역을 추출하여, 잡음에 의해 발생된 에지나 빛에 의해 추출되지 못한 에지에서 생긴 눈 추출의 오류는 추출된 영역의 가로, 세로 비율과 각 영역의 공간 정보를 이용하여 해결한다. 실험 결과에서 85%의 정확도와 평균 0.3초의 수행시간을 보였으며, 에지 정보를 이용한 방법의 문제점인 정확도와 특징 점을 이용한 방법의 문제점인 수행시간을 동시에 향상시킨 결과를 보였다.

  • PDF