Main problem in the domestic motion capture type production is that motion data are used even in the case when the human sensibility is needed. In other words it fails to give human images to the work, and production method only use motion capture data unconditionally and impetuously. Even though motion capture is effective and are various and applicable to various areas, it would cause enormous lose of capital and manual labor if these problems are not solved. In the present study, we compare motion capture with key animation production and analyze the merits and short comings of them. Also, we analyze them through the actual production and present the efficient method of key animation production when the expensive motion capturing devices are not available.
Proceedings of the Korea Multimedia Society Conference
/
2000.04a
/
pp.474-477
/
2000
최근 3D 애니메이션 , 영화 특수효과 그리고 게임제작시 모션 캡처 시스템(Motion Capture System)을 통하여 실제 인간의 동작 및 표정을 수치적으로 측정해내어 이를 실제 애니메이션에 직접 사용함으로써 막대한 작업시간 및 인력 드리고 자본을 획기적으로 줄이고 있다. 그러나 기존의 모션 캡처 시스템은 고속 카메라를 이용함으로써 가격이 고가이고 움직임 추적에서도 여러 가지 문제점을 가지고 있다. 본 논문에서는 일반 저가의 카메라와 신경회로망 및 영상처리를 이용하여 얼굴 애니메이션용 모션 캡처 시스템에 적용할 수 있는 경제적이고 효율적인 얼굴 움직임 추적 기법을 제안한다.
Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.553-557
/
2001
얼굴 표정을 애니메이션하는 것은 얼굴 구조의 복잡성과 얼굴 표면의 섬세한 움직임으로 인해 컴퓨터 애니메이션 분야에서 가장 어려운 분야로 인식되고 있다. 최근 3D 애니메이션, 영화 특수효과 그리고 게임 제작시 모션 캡처 시스템(Motion Capture System)을 통하여 실제 인간의 동작 및 얼굴 표정을 수치적으로 측정해내어 이를 실제 애니메이션에 직접 사용함으로써 막대한 작업시간 및 인력 그리고 자본을 획기적으로 줄이고 있다. 그러나 기존의 모션 캡처 시스템은 고속 카메라를 이용함으로써 가격이 고가이고 움직임 추적에서도 여러 가지 문제점을 가지고 있다. 본 논문에서는 일반 저가의 카메라와 신경회로망 및 영상처리기법을 이용하여 얼굴 애니메이션용 모션 캡처 시스템에 적응할 수 있는 경제적이고 효율적인 얼굴 움직임 추적기법을 제안한다.
This paper describes methodology which enables user in order to generate facial expression animation of caricature which applies a facial motion data in the vector based caricature. This method which sees was embodied with the plug-in of illustrator. And It is equipping the user interface of separate way. The data which is used in experiment attaches 28 small-sized markers in important muscular part of the actor face and captured the multiple many expression which is various with Facial Tracker. The caricature was produced in the bezier curve form which has a respectively control point from location of the important marker which attaches in the face of the actor when motion capturing to connection with motion data and the region which is identical. The facial motion data compares in the caricature and the spatial scale went through a motion calibration process too because of size. And with the user letting the control did possibly at any time. In order connecting the caricature and the markers also, we did possibly with the click the corresponding region of the caricature, after the user selects each name of the face region from the menu. Finally, this paper used a user interface of illustrator and in order for the caricature facial expression animation generation which applies a facial motion data in the vector based caricature to be possible.
With the success of the world's first 3D computer animated film, "Toy Story" in 1995, industrial development of 3D computer animation gained considerable momentum. Consequently, various 3D animations for TV were produced; in addition, high quality 3D computer animation games became common. To save a large amount of 3D animation production time and cost, technological development has been conducted actively, in accordance with the expansion of industrial demand in this field. Further, compared with the traditional approach of producing animations through hand-drawings, the efficiency of producing 3D computer animations is infinitely greater. In this study, an experiment and a comparative analysis of markerless motion capture systems for facial expression animation has been conducted that aims to improve the efficiency of 3D computer animation production. Faceware system, which is a product of Image Metrics, provides sophisticated production tools despite the complexity of motion capture recognition and application process. Faceshift system, which is a product of same-named Faceshift, though relatively less sophisticated, provides applications for rapid real-time motion recognition. It is hoped that the results of the comparative analysis presented in this paper become baseline data for selecting the appropriate motion capture and key frame animation method for the most efficient production of facial expression animation in accordance with production time and cost, and the degree of sophistication and media in use, when creating animation.
This paper proposes a method to directly retarget facial motion capture data to the facial rig. Facial rig is an essential tool in the production pipeline, which allows helping the artist to create facial animation. The direct mapping method from the motion capture data to the facial rig provides great convenience because artists are already familiar with the use of a facial rig and the direct mapping produces the mapping results that are ready for the artist's follow-up editing process. However, mapping the motion data into a facial rig is not a trivial task because a facial rig typically has a variety of structures, and therefore it is hard to devise a generalized mapping method for various facial rigs. In this paper, we propose a data-driven approach to the robust mapping from motion capture data to an arbitary facial rig. The results show that our method is intuitive and leads to increased productivity in the creation of facial animation. We also show that our method can retarget the expression successfully to non-human characters which have a very different shape of face from that of human.
This paper describes comparison and analysis of methodology which enables us in order to search the projection technique of optimum for projection in the plane. For this methodology, we applies the high-dimensional facial motion capture data respectively in linear and nonlinear projection techniques. The one core element of the methodology is to applies the high-dimensional facial expression data of frame unit in PCA where is a linear projection technique and Isomap, MDS, CCA, Sammon's Mapping and LLE where are a nonlinear projection techniques. And another is to find out the methodology which distributes in this low-dimensional space, and analyze the result last. For this goal, we calculate the distance between the high-dimensional facial expression frame data of existing. And we distribute it in two-dimensional plane space to maintain the distance relationship between the high-dimensional facial expression frame data of existing like that from the condition which applies linear and nonlinear projection techniques. When comparing the facial expression data which distribute in two-dimensional space and the data of existing, we find out the projection technique to maintain the relationship of distance between the frame data like that in condition of optimum. Finally, this paper compare linear and nonlinear projection techniques to projection high-dimensional facial expression data in low-dimensional space and analyze it. And we find out the projection technique of optimum from it.
With the development of digital graphics technology, the metaverse has become a significant trend in the content market. The demand for technology that generates high-quality 3D (dimension) models is rapidly increasing. Accordingly, various technical attempts are being made to create high-quality 3D virtual humans represented by digital humans. 3D volumetric capture is spotlighted as a technology that can create a 3D manikin faster and more precisely than the existing 3D model creation method. In this study, we try to analyze 3D high-precision facial production technology based on practical cases of the difficulties in content production and technologies applied in volumetric 3D and 4D model creation. Based on the actual model implementation case through 3D volumetric capture, we considered techniques for 3D virtual human face production and producted a new metahuman using a graphics pipeline for an efficient human facial generation.
This paper presents a phased visualization method of facial expression space that enables the user to control facial expression of 3D avatars by select a sequence of facial frames from the facial expression space. Our system based on this method creates the 2D facial expression space from approximately 2400 facial expression frames, which is the set of neutral expression and 11 motions. The facial expression control of 3D avatars is carried out in realtime when users navigate through facial expression space. But because facial expression space can phased expression control from radical expressions to detail expressions. So this system need phased visualization method. To phased visualization the facial expression space, this paper use fuzzy clustering. In the beginning, the system creates 11 clusters from the space of 2400 facial expressions. Every time the level of phase increases, the system doubles the number of clusters. At this time, the positions of cluster center and expression of the expression space were not equal. So, we fix the shortest expression from cluster center for cluster center. We let users use the system to control phased facial expression of 3D avatar, and evaluate the system based on the results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.