• Title/Summary/Keyword: 얼굴

Search Result 3,601, Processing Time 0.029 seconds

3D Facial Model Expression Creation with Head Motion (얼굴 움직임이 결합된 3차원 얼굴 모델의 표정 생성)

  • Kwon, Oh-Ryun;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1012-1018
    • /
    • 2007
  • 본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.

  • PDF

Component and Knowledge Based Face Detection (얼굴 요소와 지식 기반 방법을 이용한 얼굴 검출)

  • 김진모;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.733-735
    • /
    • 2004
  • 본 논문에서는 얼굴 요소 기반의 얼굴 검출을 설명한다. 기존의 얼굴 전체 영역을 사용한 검출의 문제점과 얼굴 요소 기반의 얼굴 검출 방법의 차이점을 제시하며, 얼굴 전체 영역을 사용한 검출 방법에서 해결하기 어려운 문제점을 해결 하고자 한다. 얼굴 요소 기반의 얼굴 검출 방법은 Support Vector Machines (SVM)을 사용한다. 이 SVM을 사용하여 독립적으로 얼굴 요소를 찾으며, 각각의 얼굴 요소의 위치 정보를 이용한 지식 기반 방법을 이용하여 최종 얼굴 영역을 판별해 낸다 실험 결과에서 알 수 있듯이 얼굴 요소 기반 알고리즘은 얼굴 요소 가려짐 및 얼굴 요소의 유실에 강인함을 볼 수 있다.

  • PDF

Extraction of Face and Features Using Watersheds and Face Structure Information (워터쉐드와 얼굴구조정보를 이용한 얼굴 및 얼굴구성요소 추출)

  • 조군정;임문철;김우생
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.520-522
    • /
    • 2001
  • 얼굴영역 및 얼굴구성요소 추출은 얼굴을 구별하고 인식하거나 얼굴 데이터베이스로부터 원하는 얼굴을 검색하기 위하여 필요한 기술로 다양한 방법들이 연구되어 왔다. 본 연구에서는 배경이 복잡한 칼라 얼굴영상에서 워터쉐드와 동적 피부색 범위로 얼굴후보영역을 선택한 후 각 영역내의 소영역들에 대한 칼라특성과 대칭정보를 분석하여 얼굴영역과 비얼굴 영역을 구분함으로써 얼굴영역 및 얼굴구성요소를 추출하는 방법을 제안한다. 제안된 방법이 기존연구에 비해 피부색 배경영역에 의한 오류를 제거하고 정확성이 우수한 점을 실험결과롤 제시하고 분석한다.

  • PDF

Face Recognition Algorithm Using Face Feature Evaluation Function (얼굴특징 평가함수를 이용한 얼굴인식 알고리즘)

  • 김정훈;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.484-487
    • /
    • 2003
  • 본 논문에서는 CCD 카메라로부터 입력된 얼굴영상에서 피부색상 정보를 이용하여 얼굴을 검출하고 얼굴특징자인 눈, 코, 입의 얼굴특징 벡터를 추출한 후, 벡터들로부터 특징 평가함수를 적용하여 개인의 얼굴을 인식하는 알고리즘을 제안하였다. 제안한 논문에서는 입력 영상에서 대하여 얼굴 피부색의 정보와 명암도 정보를 동시에 사용하여 얼굴영역을 검출한 후, 검출한 얼굴 영역에서 특징점인 눈, 코, 입 등을 추출한 다음, 각 특징 점들에 대한 기하학적 위치특성과 상관성을 이용한 얼굴특징 평가함수를 구성하였다. 제안한 알고리즘으로 230 장의 얼굴영상에 대하여 실험에 적용한 결과 얼굴검출 효율과 인식 성능을 개선할 수 있었다.

  • PDF

Facial Phrenology Analysis and Automatic Face Avatar Drawing System Based on Internet Using Facial Feature Information (얼굴특징자 정보를 이용한 인터넷 기반 얼굴관상 해석 및 얼굴아바타 자동생성시스템)

  • Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.982-999
    • /
    • 2006
  • In this paper, we propose an automatic facial phrenology analysis and avatar drawing system based on internet using multi color information and face geometry. In the proposed system, we detect face using logical product of Cr and I which is a components of YCbCr and YIQ color model, respectively. And then, we extract facial feature using face geometry and analyze user's facial phrenology with the classification of each facial feature. And also, the proposed system can make avatar drawing automatically using extracted and classified facial features. Experimental result shows that proposed algorithm can analyze facial phrenology as well as detect and recognize user's face at real-time.

  • PDF

SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time (실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식)

  • Shin, Ki-Han;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

Face-Summarization using Spatio-Temporal Volume (시공간 입체를 이용한 등장인물 얼굴요약)

  • 박재희;김휘용;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1839-1842
    • /
    • 2003
  • 본 논문에서는 동영상 내 얼굴요약을 통하여 동영상의 접근성을 향상시키고자 하는 방법을 제안한다. 얼굴요약이란 동영상에 등장한 각 사람들을 한 장씩의 얼굴영상으로 요약하는 것을 말한다. 제안하는 얼굴요약 방법은 크게 얼굴그룹생성과 대표얼굴선정의 두 과정으로 이루어진다. 동영상에서의 얼굴그룹이란 한 사람의 얼굴영상들의 집합을 의미한다. 본 논문에서는 살색화소의 시공간에서의 연속성(spatio-temporal connectivity)및 얼굴검출기법을 이용하여 얼굴영상들을 사람에 따라 그룹화 한다. 대표얼굴이란 얼굴그룹에서 그 사람을 알아보는데 가장 적당한 얼굴영상이다. 본 논문에서는 크고 정면인 얼굴을 대표얼굴로 선정하는 방법을 제안한다. 실험결과에서는 제안한 기법을 이용하여 등장인물의 등퇴장이 빈번하게 발생할 경우에도 동영상을 얼굴 영상들로 요약할 수 있음을 보인다

  • PDF

Face Detection System Based on Candidate Extraction through Segmentation of Skin Area and Partial Face Classifier (피부색 영역의 분할을 통한 후보 검출과 부분 얼굴 분류기에 기반을 둔 얼굴 검출 시스템)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this paper we propose a face detection system which consists of a method of face candidate extraction using skin color and a method of face verification using the feature of facial structure. Firstly, the proposed extraction method of face candidate uses the image segmentation and merging algorithm in the regions of skin color and the neighboring regions of skin color. These two algorithms make it possible to select the face candidates from the variety of faces in the image with complicated backgrounds. Secondly, by using the partial face classifier, the proposed face validation method verifies the feature of face structure and then classifies face and non-face. This classifier uses face images only in the learning process and does not consider non-face images in order to use less number of training images. In the experimental, the proposed method of face candidate extraction can find more 9.55% faces on average as face candidates than other methods. Also in the experiment of face and non-face classification, the proposed face validation method obtains the face classification rate on the average 4.97% higher than other face/non-face classifiers when the non-face classification rate is about 99%.

The analysis of parameters and affection(Gamsung) for facial types of Korean females in twenties (한국인 20대 여성 얼굴의 수치 및 감성 구조 분석)

  • 박수진;김한경;한재현;이정원;김종일;송경석;정찬섭
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.74-81
    • /
    • 2001
  • 얼굴은 내측두(IT: inferotemporal) 영역에 독자적인 처리 공간을 가지고 있는 (Bruce, Desimone, & Gross, 1981; Rolls, 1992) 매우 복잡한 시각 자극이다. 본연구는 이러한 복잡한 얼굴 자극을 구성하고 있는 물리적인 특징들을 추출하여 얼굴을 수치 구조면에서 분석하고 이를 감성 공간과 연결시킬 목적으로 수행되었ㄷ. 이를 위해 본연구에서는 먼저 얼굴 내부에 36개의 특징들 및 특징들 간 관계를 설정하였다. 또한 얼굴 외곽형의 분류를 위해 얼굴 윤곽선 부위에 14개의 특징점을 찍고 코끝에서부터 이들 지점과의 거리를 측정하였다. 사람마다 기본적인 얼굴 14개의 특징점을 찍고 코끝에서부터 이들 지점과의 거리를 측정하였다. 사람마다 기본적인 얼굴 크기가 다르다는 점을 감안하여 이들 특징값들 중 길이값들은 얼굴 좌우폭 또는 얼굴 상하길이를 기주으로 정규화(normalization)되었다. 그런 다음 36개의 얼굴 내부 특징 요소들과 5가지 얼굴 외곽형을 입력값으로 하여 주성분분석(PCA: proncipal component analysis)을 실시하고, 여기서 도출된 다섯 개의 요인점수를 기반으로 5차원 공간을 가정하였다. 이 공간을 대표하는 얼굴을 고루 선정하되 해당 얼굴이 있다고 보기 어려운 영역을 제외하고 평균에 해당하는 얼굴을 추가하여 총 30가지 대표 얼굴 유형을 선정하였다. 선정된 얼굴들에 대해 일차적으로 감성 평가를 실시하여 2차원 감성 공간에 대표 얼굴들을 분포시켰다.

  • PDF

Illumination-Robust Face Recognition based on Illumination-Separated Eigenfaces (조명분리 고유얼굴에 기반한 조명에 강인한 얼굴 인식)

  • Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • The popular eigenfaces-based face recognition among proposed face recognition methods utilizes the eigenfaces obtained from applying PCA to a training face image set. Thus, it may not achieve a reliable performance under illumination environments different from that of training face images. In this paper, we propose an illumination-separate eigenfaces-based face recognition method, which excludes the effects of illumination as much as possible. The proposed method utilizes the illumination-separate eigenfaces which is obtained by orthogonal decomposition of the eigenface space of face model image set with respect to the constructed face illumination subspace. Through experiments, it is shown that the proposed face recognition method based on the illumination-separate eigenfaces performs more robustly under various illumination environments than the conventional eigenfaces-based face recognition method.