• Title/Summary/Keyword: 언어 Text

Search Result 762, Processing Time 0.018 seconds

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models (BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.1-25
    • /
    • 2020
  • Sentiment Analysis (SA) is a Natural Language Processing (NLP) task that analyzes the sentiments consumers or the public feel about an arbitrary object from written texts. Furthermore, Aspect-Based Sentiment Analysis (ABSA) is a fine-grained analysis of the sentiments towards each aspect of an object. Since having a more practical value in terms of business, ABSA is drawing attention from both academic and industrial organizations. When there is a review that says "The restaurant is expensive but the food is really fantastic", for example, the general SA evaluates the overall sentiment towards the 'restaurant' as 'positive', while ABSA identifies the restaurant's aspect 'price' as 'negative' and 'food' aspect as 'positive'. Thus, ABSA enables a more specific and effective marketing strategy. In order to perform ABSA, it is necessary to identify what are the aspect terms or aspect categories included in the text, and judge the sentiments towards them. Accordingly, there exist four main areas in ABSA; aspect term extraction, aspect category detection, Aspect Term Sentiment Classification (ATSC), and Aspect Category Sentiment Classification (ACSC). It is usually conducted by extracting aspect terms and then performing ATSC to analyze sentiments for the given aspect terms, or by extracting aspect categories and then performing ACSC to analyze sentiments for the given aspect category. Here, an aspect category is expressed in one or more aspect terms, or indirectly inferred by other words. In the preceding example sentence, 'price' and 'food' are both aspect categories, and the aspect category 'food' is expressed by the aspect term 'food' included in the review. If the review sentence includes 'pasta', 'steak', or 'grilled chicken special', these can all be aspect terms for the aspect category 'food'. As such, an aspect category referred to by one or more specific aspect terms is called an explicit aspect. On the other hand, the aspect category like 'price', which does not have any specific aspect terms but can be indirectly guessed with an emotional word 'expensive,' is called an implicit aspect. So far, the 'aspect category' has been used to avoid confusion about 'aspect term'. From now on, we will consider 'aspect category' and 'aspect' as the same concept and use the word 'aspect' more for convenience. And one thing to note is that ATSC analyzes the sentiment towards given aspect terms, so it deals only with explicit aspects, and ACSC treats not only explicit aspects but also implicit aspects. This study seeks to find answers to the following issues ignored in the previous studies when applying the BERT pre-trained language model to ACSC and derives superior ACSC models. First, is it more effective to reflect the output vector of tokens for aspect categories than to use only the final output vector of [CLS] token as a classification vector? Second, is there any performance difference between QA (Question Answering) and NLI (Natural Language Inference) types in the sentence-pair configuration of input data? Third, is there any performance difference according to the order of sentence including aspect category in the QA or NLI type sentence-pair configuration of input data? To achieve these research objectives, we implemented 12 ACSC models and conducted experiments on 4 English benchmark datasets. As a result, ACSC models that provide performance beyond the existing studies without expanding the training dataset were derived. In addition, it was found that it is more effective to reflect the output vector of the aspect category token than to use only the output vector for the [CLS] token as a classification vector. It was also found that QA type input generally provides better performance than NLI, and the order of the sentence with the aspect category in QA type is irrelevant with performance. There may be some differences depending on the characteristics of the dataset, but when using NLI type sentence-pair input, placing the sentence containing the aspect category second seems to provide better performance. The new methodology for designing the ACSC model used in this study could be similarly applied to other studies such as ATSC.