• 제목/요약/키워드: 언어 학습 모델

검색결과 845건 처리시간 0.023초

음성특징의 거리에 기반한 한국어 발음의 시각화 (Visualization of Korean Speech Based on the Distance of Acoustic Features)

  • 복거철
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.197-205
    • /
    • 2020
  • 한국어는 자음과 모음과 같은 음소 단위의 발음은 고정되어 있고 표기에 대응하는 발음은 변하지 않기 때문에 외국인 학습자가 쉽게 접근할 수 있다. 그러나 단어와 어구, 문장을 말할 때는 음절과 음절의 경계에서 소리의 변동이 다양하고 복잡하며 표기와 발음이 일치하지 않기 때문에 외국어로서의 한국어 표준 발음 학습은 어려운 면이 있다. 그러나 영어 같은 다른 언어와 달리 한국어의 표기와 발음의 관계는 논리적인 원리에 따라 예외 없이 규칙화 할 수 있는 장점이 있으므로 발음오류에 대해 체계적인 분석이 가능한 것으로 여겨진다. 본 연구에서는 오류 발음과 표준 발음의 차이를 컴퓨터 화면상의 상대적 거리로 표현하여 시각화하는 모델을 제시한다. 기존 연구에서는 발음의 특징을 단지 컬러 또는 3차원 그래픽으로 표현하거나 입과 구강의 변화하는 형태를 애니메이션으로 보여 주는 방식에 머물러 있으며 추출하는 음성의 특징도 구간의 평균과 같은 점 데이터를 이용하는데 그치고 있다. 본 연구에서는 시계열로 표현되는 음성데이터의 특성 및 구조를 요약하거나 변형하지 않고 직접 이용하는 방법을 제시한다. 이를 위해서 딥러닝 기법을 토대로 자기조직화 알고리즘과 variational autoencoder(VAE) 모델 및 마코브 확률모델을 결합한 확률적 SOM-VAE 기법을 사용하여 클러스터링 성능을 향상시켰다.

격틀 사전과 하위 범주 정보를 이용한 한국어 의미역 결정 (Korean Semantic Role Labeling Using Case Frame Dictionary and Subcategorization)

  • 김완수;옥철영
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1376-1384
    • /
    • 2016
  • 기계가 사람과 같이 문장을 처리하게 하려면 사람이 쓴 문장을 토대로 사람이 문장을 통해 발현하는 모든 문장의 표현 양상을 학습해 사람처럼 분석하고 처리할 수 있어야 한다. 이를 위해 기본적으로 처리되어야 할 부분은 언어학적인 정보처리이다. 언어학에서 통사론적으로 문장을 분석할 때 필요한 것이 문장을 성분별로 나눌 수 있고, 문장의 핵심인 용언을 중심으로 필수 논항을 찾아 해당 논항이 용언과 어떤 의미역 관계를 맺고 있는지를 파악할 수 있어야 한다. 본 연구에서는 국립국어원 표준국어대사전을 기반으로 구축한 격틀사전과 한국어 어휘 의미망에서 용언의 하위 범주를 자질로 구축한 CRF 모델을 적용하여 의미역을 결정하는 방법을 사용하였다. 문장의 어절, 용언, 격틀사전, 단어의 상위어 정보를 자질로 구축한 CRF 모델을 기반으로 하여 의미역을 자동으로 태깅하는 실험을 한 결과 정확률이 83.13%로 기존의 규칙 기반 방법을 사용한 의미역 태깅 결과의 정확률 81.2%보다 높은 성능을 보였다.

온라인 뉴스에 대한 한국 대중의 감정 예측 (Inference of Korean Public Sentiment from Online News)

  • ;최순영;임희석
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.25-31
    • /
    • 2018
  • 온라인 뉴스는 기존의 신문을 대체하였고, 우리가 정보에 접근하고 공유하는 방법에 큰 변화를 가져왔다. 뉴스 웹사이트들은 사용자가 댓글을 남길 수 있는 기능을 오랜 시간동안 제공하였고, 그 중 몇몇 뉴스 웹사이트에서는 뉴스 기사들에 대한 사용자의 반응들을 크라우드소싱(crowdsource)하기 시작했다. 감정분석 분야에서는 텍스트에 반영된 감정과 반응들을 컴퓨팅적으로 모델링하기 위한 시도를 하고 있다. 본 연구에서는 뉴스 기사에 대한 반응들이 뉴스 본문과 수학적인 상관관계를 갖는지 밝히기 위해, 사용자로부터 생성된 다섯 가지의 감정 라벨(label)을 사용하여 10가지 카테고리(category)에 해당하는 100,000개 이상의 뉴스 기사들을 분석한다. 본 연구에서는 전처리과정이 최소한으로 필요하고 기계학습이 적용하지 않아도 되는 간단한 감정 분석 알고리즘(algorithm)을 제안한다. 우리는 이 모델이 한국어와 같은 형태론적으로 복잡한 언어에도 효과적이라는 것을 증명한다.

적응 프루닝 알고리즘과 PDT-SSS 알고리즘을 이용한 한국어 연속음성인식에 관한 연구 (A Study on the Korean Continuous Speech Recognition using Adaptive Pruning Algorithm and PDT-SSS Algorithm)

  • 황철준;오세진;김범국;정호열;정현열
    • 한국멀티미디어학회논문지
    • /
    • 제4권6호
    • /
    • pp.524-533
    • /
    • 2001
  • 연속음성인식 시스템의 실용화를 위해서 가장 중요한 것은 높은 인식 성능을 가지면서 동시에 실시간으로 인식되어야 한다. 이를 위하여 본 연구에서는 먼저 연속음성인식의 인식률 향상을 위하여 효과적인 음향모델을 구성하기 위하여 PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) 알고리즘을 도입하여 HM-Net을 구성하고, 언어모델로서 반복학습을 이용하여 인식률 향상을 제고한다. 그리고, 기존의 연구에서 유효함이 입증된 프레임 단위 적응 프루닝 알고리즘을 연속음성에 적용하여 인식 속도를 개선하고자 한다. 제안된 방법의 유효성을 확인하기 위하여, 남성 4인이 항공편 예약 관련 음성에 대하여 인식 실험을 수행하였다. 그 결과 연속음성인식률 90.9%, 단어인식률 90.7%의 높은 인식성능을 얻었으며, 적응 프루닝 알고리즘을 적용한 경우 인식성능의 저하없이 약 1.2초(전체의 15%)의 인식시간을 줄일 수 있어 제안된 방법의 유효성을 확인할 수 있었다.

  • PDF

PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화 (Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization)

  • 노석범;왕계홍;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.87-92
    • /
    • 2016
  • 본 논문에서는 일반적인 신경회로망의 단점인 느린 학습속도를 획기적으로 개선한 네트워크인 Extreme Learning Machine과 전문가들의 언어적 정보들을 기술 할 수 있는 퍼지 이론을 접목한 퍼지 Extreme Learning Machine을 최적화하기 위하여 Particle Swarm Optimization 알고리즘을 이용하였다. 퍼지 Extreme Learning Machine의 활성화 함수를 일반적인 시그모이드 함수를 사용하지 않고, 퍼지 C-Means 클러스터링 알고리즘의 활성화 레벨 함수를 이용하였다. Particle Swarm Optimization 알고리즘과 같은 최적화 알고리즘을 통하여 퍼지 Extreme Learning Machine의 활성화 함수의 파라미터들을 최적화 한다. Particle Swarm Optimization과 같은 최적화 알고리즘을 통한 제안된 모델의 최적화 하고 최적화된 모델의 분류성능을 평가하기 위하여 다양한 머신 러닝 데이터 집합을 사용하여 평가한다.

인공지능을 이용한 국악 멜로디 생성기에 관한 연구 (Korean Traditional Music Melody Generator using Artificial Intelligence)

  • 배준
    • 한국정보통신학회논문지
    • /
    • 제25권7호
    • /
    • pp.869-876
    • /
    • 2021
  • 음악 분야에서는 최근 머신러닝을 이용한 다양한 인공지능 작곡 방법이 시도되고 있다. 하지만 이 연구는 대부분 서양음악을 중심으로 이루어져왔고 국악에 관한 연구는 거의 이루어지지 않았다. 특히 연구를 위한 데이터 세트조차 만들어지지 않은 상태여서 연구에 어려움이 많았다. 이에 해당 논문에서는 국악의 데이터 세트를 만들고 그 데이터 세트를 기반으로 하여 세 가지 알고리즘을 이용하여 국악 멜로디를 생성하고 그 결과물을 비교하여 보기로 한다. 언어와 음악의 유사성에 기반한 LSTM, Music Transformer 그리고 Self Attention 3가지 모델들이 선택되었다. 각 3가지 모델을 이용하여 국악 멜로디 생성기를 모델링하고 학습시켜 국악 멜로디를 생성해 내었다. 사용자 평가 결과 Self Attention 방식이 LSTM 방식과 Music transformer 방식에 비해 높은 선호도를 보였다. 데이터 표현 및 훈련데이터는 인공지능 작곡에 있어 매우 중요하다. 이를 위한 기초적인 국악 데이터 세트를 만들고 다양한 알고리즘으로 인공지능 작곡을 시도하였고 이것이 향후 국악 인공지능 작곡의 연구에 도움이 될 수 있을 것으로 기대한다.

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.19-27
    • /
    • 2022
  • 본 연구에서는 시계열 데이터 이상 탐지 수행을 위한 MLOps(Machine Learning Operations) 워크플로를 기술하고 관리할 수 있는 언어와 플랫폼을 제안한다. 시계열 데이터는 IoT 센서, 시스템 성능 지표, 사용자 접속량 등 많은 분야에서 수집되고 있다. 또한, 시스템 모니터링 및 이상 탐지 등 많은 응용 분야에 활용 중이다. 시계열 데이터의 예측 및 이상 탐지를 수행하기 위해서는 분석된 모델을 빠르고 유연하게 운영 환경에 적용할 수 있는 MLOps 플랫폼이 필요하다. 이에, 최근 데이터 분석에 많이 활용되고 있는 Python 기반의 AMML(AI/ML Modeling Language)을 개발하여 손쉽게 MLOps 워크플로를 구성하고 실행할 수 있도록 제안한다. 제안하는 AI MLOps 플랫폼은 AMML을 이용하여 다양한 데이터 소스(R-DB, NoSql DB, Log File 등)에서 시계열 데이터를 추출, 전처리 및 예측을 수행할 수 있다. AMML의 적용 가능성을 검증하기 위해, 변압기 오일 온도 예측 딥러닝 모델을 생성하는 워크플로를 AMML로 구성하고 학습이 정상적으로 수행됨을 확인하였다.

ChatGPT 기반 소프트웨어 요구공학 (ChatGPT-based Software Requirements Engineering)

  • 최종명
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.45-50
    • /
    • 2023
  • 소프트웨어 개발에서 요구사항 도출 및 분석은 매우 중요한 단계이며, 다양한 이해관계자가 관여하기 때문에 많은 시간과 노력을 필요로 한다. ChatGPT는 다양한 문서를 학습한 대규모 언어 모델로서 코드 생성, 디버깅 등의 능력은 물론 소프트웨어 분석 설계 영역에서도 활용할 수 있는 능력을 갖고 있는 것으로 연구되고 있다. 본 논문에서는 ChatGPT의 이러한 능력을 활용하여 소프트웨어 요구사항 도출, 시스템 목표에 적합한 요구사항 분석, 유스케이스 형태로 문서화하는 요구공학 방법을 제안한다. 소프트웨어 요구공학에서 이해관계자, 분석가, ChatGPT는 협업 모델을 가져야 하며, 요구사항 도출, 분석, 명세화에서 ChatGPT의 결과를 초기 요구사항으로 하여 분석가와 이해관계자가 점검 및 내용을 추가하는 형태로 요구공학이 진행하는 것을 제안한다. ChatGPT의 성능이 향상될수록 요구사항의 도출 및 분석이 점차 정확도를 높일 수 있을 것이며, 소프트웨어 요구공학에서 시간 및 비용을 절감할 수 있을 것이다.

영상 콘텐츠의 오디오 분석을 통한 메타데이터 자동 생성 방법 (Method of Automatically Generating Metadata through Audio Analysis of Video Content)

  • 용성중;박효경;유연휘;문일영
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.557-561
    • /
    • 2021
  • 영상 콘텐츠를 사용자에게 추천하기 위해서는 메타데이터가 필수적인 요소로 자리 잡고 있다. 하지만 이러한 메타데이터는 영상 콘텐츠 제공자에 의해 수동적으로 생성되고 있다. 본 논문에서는 기존 수동으로 직접 메타데이터를 입력하는 방식에서 자동으로 메타데이터를 생성하는 방법을 연구하였다. 기존 연구에서 감정 태그를 추출하는 방법에 추가로 영화 오디오를 통한 장르와 제작국가에 대한 메타데이터 자동 생성 방법에 대해 연구를 진행하였다. 전이학습 모델인 ResNet34 인공 신경망 모델을 이용하여 오디오의 스펙트로그램으로부터 장르를 추출하고, 영화 속 화자의 음성을 음성인식을 통해 언어를 감지하였다. 이를 통해 메타데이터를 생성 인공지능을 통해 자동 생성 가능성을 확인할 수 있었다.

EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용 (Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques)

  • 이현상;이원석;조보근;이희준;오상진;유상우;남마루;이현식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권11호
    • /
    • pp.471-480
    • /
    • 2023
  • 국내 건설수주 규모는 2013년 91.3조원에서 2021년 총 212조원으로 특히 민간부문에서 크게 성장하였다. 국내외 시장 규모가 성장하면서, EPC(Engineering, Procurement, Construction) 프로젝트의 규모와 복잡성이 더욱 증가되고, 이에 프로젝트 관리 및 ITB(Invitation to Bid) 문서의 위험 관리가 중요한 이슈가 되고 있다. EPC 프로젝트 발주 이후 입찰 절차에서 실제 건설 회사에게 부여되는 대응 시간은 한정적일 뿐만 아니라, 인력 및 비용의 문제로 ITB 문서 계약 조항의 모든 리스크를 검토하는데 매우 어려움이 있다. 기존 연구에서는 이와 같은 문제를 해결하고자 EPC 계약 문서의 위험 조항을 범주화하고, 이를 AI 기반으로 탐지하려는 시도가 있었으나, 이는 레이블링 데이터 활용의 한계와 클래스 불균형과 같은 데이터 측면의 문제로 실무에서 활용할 수 있는 수준의 지원 시스템으로 활용하기 어려운 상황이다. 따라서 본 연구는 기존 연구와 같이 위험 조항 자체를 정의하고 분류하는 것이 아니라, FIDIC Yellow 2017(국제 컨설팅엔지니어링 연맹 표준 계약 조건) 기준 계약 조항을 세부적으로 분류할 수 있는 AI 모델을 개발하고자 한다. 프로젝트의 규모, 유형에 따라서 세부적으로 검토해야 하는 계약 조항이 다를 수 있기 때문에 이와 같은 다중 텍스트 분류 기능이 필요하다. 본 연구는 다중 텍스트 분류 모델의 성능 고도화를 위해서 최근 텍스트 데이터의 컨텍스트를 효율적으로 학습할 수 있는 ELECTRA PLM(Pre-trained Language Model)을 사전학습 단계부터 개발하고, 해당 모델의 성능을 검증하기 위해서 총 4단계 실험을 진행했다. 실험 결과, 자체 개발한 ITB-ELECTRA 모델 및 Legal-BERT의 앙상블 버전이 57개 계약 조항 분류에서 가중 평균 F1-Score 기준 76%로 가장 우수한 성능을 달성했다.