• Title/Summary/Keyword: 언어 학습 모델

Search Result 845, Processing Time 0.022 seconds

Properties and Quantitative Analysis of Bias in Korean Language Models: A Comparison with English Language Models and Improvement Suggestions (한국어 언어모델의 속성 및 정량적 편향 분석: 영어 언어모델과의 비교 및 개선 제안)

  • Jaemin Kim;Dong-Kyu Chae
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.558-562
    • /
    • 2023
  • 최근 ChatGPT의 등장으로 텍스트 생성 모델에 대한 관심이 높아지면서, 텍스트 생성 태스크의 성능평가를 위한 지표에 대한 연구가 활발히 이뤄지고 있다. 전통적인 단어 빈도수 기반의 성능 지표는 의미적인 유사도를 고려하지 못하기 때문에, 사전학습 언어모델을 활용한 지표인 BERTScore를 주로 활용해왔다. 하지만 이러한 방법은 사전학습 언어모델이 학습한 데이터에 존재하는 편향으로 인해 공정성에 대한 문제가 우려된다. 이에 따라 한국어 사전학습 언어모델의 편향에 대한 분석 연구가 필요한데, 기존의 한국어 사전학습 언어모델의 편향 분석 연구들은 사회에서 생성되는 다양한 속성 별 편향을 고려하지 못했다는 한계가 있다. 또한 서로 다른 언어를 기반으로 하는 사전학습 언어모델들의 속성 별 편향을 비교 분석하는 연구 또한 미비하였다. 이에 따라 본 논문에서는 한국어 사전학습 언어모델의 속성 별 편향을 비교 분석하며, 영어 사전학습 언어모델이 갖고 있는 속성 별 편향과 비교 분석하였고, 비교 가능한 데이터셋을 구축하였다. 더불어 한국어 사전학습 언어모델의 종류 및 크기 별 편향 분석을 통해 적합한 모델을 선택할 수 있도록 가이드를 제시한다.

  • PDF

Cross-Lingual Transfer of Pretrained Transformers to Resource-Scarce Languages (사전 학습된 Transformer 언어 모델의 이종 언어 간 전이 학습을 통한 자원 희소성 문제 극복)

  • Lee, Chanhee;Park, Chanjun;Kim, Gyeongmin;Oh, Dongsuk;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.135-140
    • /
    • 2020
  • 사전 학습된 Transformer 기반 언어 모델은 자연어처리 시스템에 적용되었을 시 광범위한 사례에서 큰 폭의 성능 향상을 보여준다. 여기서 사전 학습에 사용되는 언어 모델링 태스크는 비지도 학습에 속하는 기술이기 때문에 상대적으로 데이터의 확보가 쉬운 편이다. 하지만 몇 종의 주류 언어를 제외한 대부분 언어는 활용할 수 있는 언어 자원 자체가 희소하며, 따라서 이러한 사전 학습 기술의 혜택도 누리기 어렵다. 본 연구에서는 이와 같은 상황에서 발생할 수 있는 자원 희소성 문제를 극복하기 위해 이종 언어 간 전이 학습을 이용하는 방법을 제안한다. 본 방법은 언어 자원이 풍부한 언어에서 학습된 Transformer 기반 언어 모델에서 얻은 파라미터 중 재활용 가능한 부분을 이용하여 목표 언어의 모델을 초기화한 후 학습을 진행한다. 또한, 기존 언어와 목표 언어의 차이를 학습하는 역할을 하는 적응층들을 추가하여 이종 언어 간 전이 학습을 돕는다. 제안된 방법을 언어 자원이 희귀한 상황에 대하여 실험해본 결과, 전이 학습을 사용하지 않은 기준 모델 대비 perplexity와 단어 예측의 정확도가 큰 폭으로 향상됨을 확인하였다.

  • PDF

Towards Korean-Centric Token-free Pretrained Language Model (한국어 중심의 토큰-프리 언어 이해-생성 모델 사전학습 연구)

  • Jong-Hun Shin;Jeong Heo;Ji-Hee Ryu;Ki-Young Lee;Young-Ae Seo;Jin Seong;Soo-Jong Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.711-715
    • /
    • 2023
  • 본 연구는 대부분의 언어 모델이 사용하고 있는 서브워드 토큰화 과정을 거치지 않고, 바이트 단위의 인코딩을 그대로 다룰 수 있는 토큰-프리 사전학습 언어모델에 대한 것이다. 토큰-프리 언어모델은 명시적인 미등록어 토큰이 존재하지 않고, 전 처리 과정이 단순하며 다양한 언어 및 표현 체계에 대응할 수 있는 장점이 있다. 하지만 관련 연구가 미흡, 서브워드 모델에 대비해 학습이 어렵고 낮은 성능이 보고되어 왔다. 본 연구에서는 한국어를 중심으로 토큰-프리 언어 이해-생성 모델을 사전 학습 후, 서브워드 기반 모델과 비교하여 가능성을 살펴본다. 또한, 토큰 프리 언어모델에서 지적되는 과도한 연산량을 감소시킬 수 있는 그래디언트 기반 서브워드 토크나이저를 적용, 처리 속도를 학습 2.7배, 추론 1.46배 개선하였다.

  • PDF

Calibration of Pre-trained Language Model for Korean (사전 학습된 한국어 언어 모델의 보정)

  • Jeong, Soyeong;Yang, Wonsuk;Park, ChaeHun;Park, Jong C.
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.243-248
    • /
    • 2020
  • 인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.

  • PDF

Measurement of Political Polarization in Korean Language Model by Quantitative Indicator (한국어 언어 모델의 정치 편향성 검증 및 정량적 지표 제안)

  • Jeongwook Kim;Gyeongmin Kim;Imatitikua Danielle Aiyanyo;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.16-21
    • /
    • 2022
  • 사전학습 말뭉치는 위키백과 문서 뿐만 아니라 인터넷 커뮤니티의 텍스트 데이터를 포함한다. 이는 언어적 관념 및 사회적 편향된 정보를 포함하므로 사전학습된 언어 모델과 파인튜닝한 언어 모델은 편향성을 내포한다. 이에 따라 언어 모델의 중립성을 평가할 수 있는 지표의 필요성이 대두되었으나, 아직까지 언어 인공지능 모델의 정치적 중립성에 대해 정량적으로 평가할 수 있는 척도는 존재하지 않는다. 본 연구에서는 언어 모델의 정치적 편향도를 정량적으로 평가할 수 있는 지표를 제시하고 한국어 언어 모델에 대해 평가를 수행한다. 실험 결과, 위키피디아로 학습된 언어 모델이 가장 정치 중립적인 경향성을 나타내었고, 뉴스 댓글과 소셜 리뷰 데이터로 학습된 언어 모델의 경우 정치 보수적, 그리고 뉴스 기사를 기반으로 학습된 언어 모델에서 정치 진보적인 경향성을 나타냈다. 또한, 본 논문에서 제안하는 평가 방법의 안정성 검증은 각 언어 모델의 정치적 편향 평가 결과가 일관됨을 입증한다.

  • PDF

Probing Semantic Relations between Words in Pre-trained Language Model (사전학습 언어모델의 단어간 의미관계 이해도 평가)

  • Oh, Dongsuk;Kwon, Sunjae;Lee, Chanhee;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.237-240
    • /
    • 2020
  • 사전학습 언어모델은 다양한 자연어처리 작업에서 높은 성능을 보였다. 하지만, 사전학습 언어모델은 문장 내 문맥 정보만을 학습하기 때문에 단어간 의미관계 정보를 추론하는데는 한계가 있다. 최근에는, 사전학습 언어모델이 어느수준으로 단어간 의미관계를 이해하고 있는지 다양한 Probing Test를 진행하고 있다. 이러한 Test는 언어모델의 강점과 약점을 분석하는데 효율적이며, 한층 더 인간의 언어를 정확하게 이해하기 위한 모델을 구축하는데 새로운 방향을 제시한다. 본 논문에서는 대표적인 사전 학습기반 언어모델인 BERT(Bidirectional Encoder Representations from Transformers)의 단어간 의미관계 이해도를 평가하는 3가지 작업을 진행한다. 첫 번째로 단어 간의 상위어, 하위어 관계를 나타내는 IsA 관계를 분석한다. 두번째는 '자동차'와 '변속'과 같은 관계를 나타내는 PartOf 관계를 분석한다. 마지막으로 '새'와 '날개'와 같은 관계를 나타내는 HasA 관계를 분석한다. 결과적으로, BERTbase 모델에 대해서는 추론 결과 대부분에서 낮은 성능을 보이지만, BERTlarge 모델에서는 BERTbase보다 높은 성능을 보였다.

  • PDF

In-Context Retrieval-Augmented Korean Language Model (In-Context 검색 증강형 한국어 언어 모델)

  • Sung-Min Lee;Joung Lee;Daeryong Seo;Donghyeon Jeon;Inho Kang;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.443-447
    • /
    • 2023
  • 검색 증강형 언어 모델은 입력과 연관된 문서들을 검색하고 텍스트 생성 과정에 통합하여 언어 모델의 생성 능력을 강화한다. 본 논문에서는 사전 학습된 대규모 언어 모델의 추가적인 학습 없이 In-Context 검색 증강으로 한국어 언어 모델의 생성 능력을 강화하고 기존 언어 모델 대비 성능이 증가함을 보인다. 특히 다양한 크기의 사전 학습된 언어 모델을 활용하여 검색 증강 결과를 보여 모든 규모의 사전 학습 모델에서 Perplexity가 크게 개선된 결과를 확인하였다. 또한 오픈 도메인 질의응답(Open-Domain Question Answering) 과업에서도 EM-19, F1-27.8 향상된 결과를 보여 In-Context 검색 증강형 언어 모델의 성능을 입증한다.

  • PDF

Research on Features for Effective Cross-Lingual Transfer in Korean (효과적인 한국어 교차언어 전송을 위한 특성 연구)

  • Taejun Yun;Taeuk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.119-124
    • /
    • 2023
  • 자원이 풍부한 언어를 사용하여 훈련된 모델을 만들고 해당 모델을 사용해 자원이 부족한 언어에 대해 전이 학습하는 방법인 교차언어 전송(Cross-Lingual Transfer)은 다국어 모델을 사용하여 특정한 언어에 맞는 모델을 만들 때 사용되는 일반적이고 효율적인 방법이다. 교차언어 전송의 성능은 서비스하는 언어와 전송 모델을 만들기 위한 훈련 데이터 언어에 따라 성능이 매우 다르므로 어떤 언어를 사용하여 학습할지 결정하는 단계는 효율적인 언어 서비스를 위해 매우 중요하다. 본 연구에서는 교차언어 전송을 위한 원천언어를 찾을 수 있는 특성이 무엇인지 회귀분석을 통해 탐구한다. 또한 교차언어전송에 용이한 원천 학습 언어를 찾는 기존의 방법론들 간의 비교를 통해 더 나은 방법을 도출해내고 한국어의 경우에 일반적으로 더 나은 원천 학습 언어를 찾을 수 있는 방법론을 도출한다.

  • PDF

ICLAL: In-Context Learning-Based Audio-Language Multi-Modal Deep Learning Models (ICLAL: 인 컨텍스트 러닝 기반 오디오-언어 멀티 모달 딥러닝 모델)

  • Jun Yeong Park;Jinyoung Yeo;Go-Eun Lee;Chang Hwan Choi;Sang-Il Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.514-517
    • /
    • 2023
  • 본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.

KcBERT: Korean comments BERT (KcBERT: 한국어 댓글로 학습한 BERT)

  • Lee, Junbum
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.437-440
    • /
    • 2020
  • 최근 자연어 처리에서는 사전 학습과 전이 학습을 통하여 다양한 과제에 높은 성능 향상을 성취하고 있다. 사전 학습의 대표적 모델로 구글의 BERT가 있으며, 구글에서 제공한 다국어 모델을 포함해 한국의 여러 연구기관과 기업에서 한국어 데이터셋으로 학습한 BERT 모델을 제공하고 있다. 하지만 이런 BERT 모델들은 사전 학습에 사용한 말뭉치의 특성에 따라 이후 전이 학습에서의 성능 차이가 발생한다. 본 연구에서는 소셜미디어에서 나타나는 구어체와 신조어, 특수문자, 이모지 등 일반 사용자들의 문장에 보다 유연하게 대응할 수 있는 한국어 뉴스 댓글 데이터를 통해 학습한 KcBERT를 소개한다. 본 모델은 최소한의 데이터 정제 이후 BERT WordPiece 토크나이저를 학습하고, BERT Base 모델과 BERT Large 모델을 모두 학습하였다. 또한, 학습된 모델을 HuggingFace Model Hub에 공개하였다. KcBERT를 기반으로 전이 학습을 통해 한국어 데이터셋에 적용한 성능을 비교한 결과, 한국어 영화 리뷰 코퍼스(NSMC)에서 최고 성능의 스코어를 얻을 수 있었으며, 여타 데이터셋에서는 기존 한국어 BERT 모델과 비슷한 수준의 성능을 보였다.

  • PDF