신경망 기계 번역(Neural Machine Translation)은 주로 지도 학습(Supervised learning)을 이용한 End-to-end 방식의 연구가 이루어지고 있다. 그러나 지도 학습 방법은 데이터가 부족한 경우에는 낮은 성능을 보이기 때문에 BERT와 같은 대량의 단일 언어 데이터로 사전학습(Pre-training)을 한 후에 미세조정(Finetuning)을 하는 Transfer learning 방법이 자연어 처리 분야에서 주로 연구되고 있다. 최근에 발표된 MASS 모델은 언어 생성 작업을 위한 사전학습 방법을 통해 기계 번역과 문서 요약에서 높은 성능을 보였다. 본 논문에서는 영어-한국어 기계 번역 성능 향상을 위해 MASS 모델을 신경망 기계 번역에 적용하였다. 실험 결과 MASS 모델을 이용한 영어-한국어 기계 번역 모델의 성능이 기존 모델들보다 좋은 성능을 보였다.
컴퓨터와 통신 기술이 발달한 정보화 사회의 현실에서 웹 기반의 프로그램 및 모바일은 중요한 매체로서 자리잡아가고 있다. 읽기는 정보 획득에서 가장 중요한 학습능력이나 학습장애아의 대부분이 읽기능력에서 문제를 가지고 있다. 오늘날 컴퓨터의 발달은 아동의 언어교육 특히 읽기 교육을 위해서 시간과 공간의 제약을 넘어 자주적으로 학습할 수 있는 모바일 활용 학습을 가능하게 하고 있다. 본 논문의 목적은 학습장애아들의 읽기 능력을 향상하기 위한 PREP 기반의 모바일 시스템을 설계하는 데 있다. 본 시스템을 통해 첫째, 학습장애아들의 읽기 능력 프로그램이 특수교사, 일반교사, 학생과 상호협력 할 수 있는 프로그램을 제공함으로써 학습장애아의 읽기 능력에 대한 진전도를 점검하고 학습능력을 향상시킬 수 있도록 설계하였다. 둘째, 학습자의 개별적 수준에 따라 수준별 학습을 제공하여 다양한 학생의 개별적 수준을 충족할 수 있도록 설계함으로써 학습장애아동의 읽기능력 향상에 기여할 수 있다. 셋째, 모바일 기기를 통해 공간적, 시간적 제약을 벗어남으로써 기존의 PREP 프로그램을 적용하는 것보다 효과적으로 읽기 능력을 향상시킬 수 있다.
환자와 주변인들에게 다양한 문제를 야기하는 치매와 조현병 진단을 위한 모델을 제안한다. 치매와 조현병 진단을 위해 프로토콜에 따라 녹음한 의사와 내담자 음성 시료를 전사 작업하여 분류 태스크를 수행하였다. 사전 학습한 언어 모델의 MLM Head를 이용해 분류 태스크를 수행하는 Prompt 기반의 분류 모델을 제안하였다. 또한 많은 수의 데이터 수를 확보하기 어려운 의료 분야에 효율적인 Few-Shot 학습 방식을 이용하였다. CLS 토큰을 미세조정하는 일반적 학습 방식의 Baseline과 비교해 Full-Shot 실험에서 7개 태스크 중 1개 태스크에서 macro, micro-F1 점수 모두 향상되었고, 3개 태스크에서 하나의 F1 점수만 향샹된 것을 확인 하였다. 반면, Few-Shot 실험에서는 7개 태스크 중 2개 태스크에서 macro, micro-F1 점수가 모두 향상되었고, 2개 태스크에서 하나의 F1 점수만 향상되었다.
본 연구에서는 중학교 1학년 37명을 대상으로 과학 수업에서 협동학습을 실시하고 소집단 협동학습 과정을 녹음/녹화하였다. 이를 토대로 협동학습 과정에서 발생하는 언어적 행동 유형을 범주화하고 이들과 학업 성취도 사이의 관계를 조사하였다. 학생들의 언어적 행동은 크게 학습 내용과 관련된 행동 및 조 활동 관리와 관련된 행동으로 구분되었다. 학습 내용과 관련된 행동은 도움 주기, 문제 읽기, 도움 요청하기로 세분되었으며, 이 중 도움 주기 행동이 가장 많았다. 학생들의 언어적 행동과 학업 성취도 사이의 단순 상관 관계를 조사한 결과, 도움 주기와 문제 읽기 행동이 학업 성취도와 정적인 상관이 있었다. 도움 주기 중 구체적인 내용을 제공하는 행동은 학업 성취도와 매우 밀접한 관계가 있었다. 한편, 부분 상관을 통하여 언어적 행동과 학업 성취도 향상과의 관계를 조사한 결과, 상위 수준의 사고를 요하는 적용 영역 성취도의 향상만이 구체적인 내용 제공하기를 비롯한 일부 언어적 행동과 정적인 상관이 있었다.
이 논문에서는 과학기술분야 특화 한국어 사전학습 언어모델인 KorSciDeBERTa를 소개한다. DeBERTa Base 모델을 기반으로 약 146GB의 한국어 논문, 특허 및 보고서 등을 학습하였으며 모델의 총 파라미터의 수는 180M이다. 논문의 연구분야 분류 태스크로 성능을 평가하여 사전학습모델의 유용성을 평가하였다. 구축된 사전학습 언어모델은 한국어 과학기술 분야의 여러 자연어처리 태스크의 성능향상에 활용될 것으로 기대된다.
프로그래밍 교육은 프로그래밍에 필요한 지식 교육부분과 문제해결능력과 연관된 프로그래밍 전략을 교육하는 부분이 함께 필요하다. 프로그램 작성 기술을 교육하는 과정은 단순한 지식 습득과정이 아니므로 수업과정에서 학습자 스스로 문제해결능력을 배양할 수 있는 유도과정이 필요하다. 이러한 특성의 프로그래밍 수업의 대표적인 수업방식은 실습방식으로, 실제 수업에서 학습자들의 서로 다른 수준을 고려하면서 실습수업을 효과적으로 운영하기에는 수업시간에 대한 제약이 많이 발생한다. 본 연구에서는 프로그래밍 교육에서 사전 프로그래밍 과제를 활용하여 주어진 학점과 시간 안에서 실습 중심의 학습 효과를 높일 수 있는 교수 학습 모델을 제시한다. 이를 통해 프로그래밍 언어 교육 과정에서 발생하는 제한된 실습수업 시간으로 인해 학습자 스스로가 문제해결능력을 배양할 수 있도록 유도하는 수업을 실시하는데 발생하는 어려움을 해결하여, 학습자가 문제해결능력을 향상시키고 좋은 프로그램 작성 기준에 적합한 프로그램 개발 능력을 배양하는 결과를 얻을 수 있었다.
화행 분석이란 자연어 발화를 통해 나타나는 화자의 의도를 파악하는 것을 말하며, 슬롯 필링이란 자연어 발화에서 도메인에 맞는 정보를 추출하기 위해 미리 정의되어진 슬롯에 대한 값을 찾는 것을 말한다. 최근 화행 분석과 슬롯 필링 연구는 딥 러닝 기반의 공동 학습을 이용하는 연구가 많이 이루어지고 있고 본 논문에서는 한국어 특허상담 도메인 대화 말뭉치를 이용하여 공동 학습 모델을 구축하고 개별적인 모델과 성능을 비교한다. 또한 추가적으로 공동 학습 모델에 주의집중 메커니즘을 적용하여 성능이 향상됨을 보인다. 최종적으로 주의집중 메커니즘 기반의 공동 학습 모델이 기준 모델과 비교하여 화행 분류와 슬롯 필링 성능이 각각 3.35%p, 0.54%p 향상되어 85.41%, 80.94%의 성능을 얻었다.
개체명 인식에 적용된 대부분의 신경망 모델들에서 CRFs와 결합을 통해 성능 향상을 하였다. 그러나 최근 대용량 데이터로 사전 학습한 모델을 활용하는 경우, 기 학습된 많은 유의미한 파라미터들로 인해 CRFs의 영향력이 비교적 작아졌다. 따라서 본 논문에서는 한국어 대용량 말뭉치로 사전 학습한 ELECTRA 모델에서의 CRFs 가 개체명 인식에 미치는 영향을 확인해보고자 한다. 모델의 입력 단위로 음절 단위와 Wordpiece 단위로 사전 학습된 두 가지의 모델을 사용하여 미세 조정을 통해 개체명 인식을 학습하였다. 실험을 통해서 두 모델에 대하여 각각 CRFs 층의 유무에 따른 성능을 비교해 보았다. 그 결과로 ELECTRA 기반으로 사전 학습된 모델에서 CRFs를 통한 F1-점수 향상을 보였다.
딥러닝 기반 분류 모델에 있어 데이터의 클래스 불균형 문제는 소수 클래스의 분류 성능을 크게 저하시킨다. 본 논문에서는 앞서 언급한 클래스 불균형 문제를 보완하기 위한 방안으로 적대적 학습 기법을 제안한다. 적대적 학습 기법의 성능 향상 여부를 확인하기 위해 총 4종의 딥러닝 기반 분류 모델을 정의하였으며, 해당 모델 간 분류 성능을 비교하였다. 실험 결과, 대화 데이터셋을 이용한 모델 학습 시 적대적 학습 기법을 적용할 경우 다수 클래스의 분류 성능은 유지하면서 동시에 소수 클래스의 분류 성능을 크게 향상시킬 수 있음을 확인하였다.
1960년대 후반에 미국MIT대학의 인공지능 실험실에서 Seymour Papert와 그의 동료들에 의해 개발된 LOGO프로그래밍 언어학습이 초등학생의 창의성 발달에 미치는 영향을 연구하고자 하였다. 그래서 LOGO프로그래밍 언어는 MSWLogo를 초등학교 5학년을 대상으로 주 2회 20차시 학습을 하고 창의성 검사는 TORRANCE TTCT(도형)을 활용하여 실시했으며, 창의성 전체요인과 세부항목에 미치는 영향을 분석하였다. 그 결과를 요약하면 다음과 같다. 첫째, LOGO프로그래밍 언어 학습 활동이 창의성 발달에 효과적인 것으로 보인다. 둘째, LOGO프로그래밍 언어가 세부항목인 유창성, 독창성, 추상성, 정교성, 저항요인 향상에 영향을 미치는 것으로 나타났다. 셋째, 실험집단 내 남학생과 여학생간의 창의성 발달에 기여하는 정도는 동일한 것으로 나타났다. 이상의 연구 결과를 종합해 볼 때 LOGO프로그래밍 언어가 아동의 두뇌 활동을 자극하여 창의성 발달에 유용한 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.