• Title/Summary/Keyword: 언덕오르기

Search Result 12, Processing Time 0.018 seconds

A Comparison of the Search Based Testing Algorithm with Metrics (메트릭에 따른 탐색 기반 테스팅 알고리즘 비교)

  • Choi, HyunJae;Chae, HeungSeok
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.480-488
    • /
    • 2016
  • Search-Based Software Testing (SBST) is an effective technique for test data generation on large domain size. Although the performance of SBST seems to be affected by the structural characteristics of Software Under Test (SUT), studies for the comparison of SBST techniques considering structural characteristics are rare. In addition to the comparison study for SBST, we analyzed the best algorithm with different structural characteristics of SUT. For the generalization of experimental results, we automatically generated 19,800 SUTs by combining four metrics, which are expected to affect the performance of SBST. According to the experiment results, Genetic algorithm showed the best performance for SUTs with high complexity and test data evaluation with count ${\leq}20,000$. On the other hand, the genetic simulated annealing and the simulated annealing showed relatively better performance for SUTs with high complexity and test data evaluation with count ${\geq}50,000$. Genetic simulated annealing, simulated annealing and hill climbing showed better performance for SUTs with low complexity.

Greedy-based Neighbor Generation Methods of Local Search for the Traveling Salesman Problem

  • Hwang, Junha;Kim, Yongho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.69-76
    • /
    • 2022
  • The traveling salesman problem(TSP) is one of the most famous combinatorial optimization problem. So far, many metaheuristic search algorithms have been proposed to solve the problem, and one of them is local search. One of the very important factors in local search is neighbor generation method, and random-based neighbor generation methods such as inversion have been mainly used. This paper proposes 4 new greedy-based neighbor generation methods. Three of them are based on greedy insertion heuristic which insert selected cities one by one into the current best position. The other one is based on greedy rotation. The proposed methods are applied to first-choice hill-climbing search and simulated annealing which are representative local search algorithms. Through the experiment, we confirmed that the proposed greedy-based methods outperform the existing random-based methods. In addition, we confirmed that some greedy-based methods are superior to the existing local search methods.