• 제목/요약/키워드: 어휘 지식 베이스

검색결과 22건 처리시간 0.018초

지식베이스를 이용한 임베디드용 연속음성인식의 어휘 적용률 개선 (Vocabulary Coverage Improvement for Embedded Continuous Speech Recognition Using Knowledgebase)

  • 김광호;임민규;김지환
    • 대한음성학회지:말소리
    • /
    • 제68권
    • /
    • pp.115-126
    • /
    • 2008
  • In this paper, we propose a vocabulary coverage improvement method for embedded continuous speech recognition (CSR) using knowledgebase. A vocabulary in CSR is normally derived from a word frequency list. Therefore, the vocabulary coverage is dependent on a corpus. In the previous research, we presented an improved way of vocabulary generation using part-of-speech (POS) tagged corpus. We analyzed all words paired with 101 among 152 POS tags and decided on a set of words which have to be included in vocabularies of any size. However, for the other 51 POS tags (e.g. nouns, verbs), the vocabulary inclusion of words paired with such POS tags are still based on word frequency counted on a corpus. In this paper, we propose a corpus independent word inclusion method for noun-, verb-, and named entity(NE)-related POS tags using knowledgebase. For noun-related POS tags, we generate synonym groups and analyze their relative importance using Google search. Then, we categorize verbs by lemma and analyze relative importance of each lemma from a pre-analyzed statistic for verbs. We determine the inclusion order of NEs through Google search. The proposed method shows better coverage for the test short message service (SMS) text corpus.

  • PDF

연관 규칙 분석 알고리즘을 활용한 영작문 형태.통사 오류 자동 발견 (Automatic Error Detection of Morpho-syntactic Errors of English Writing Using Association Rule Analysis Algorithm)

  • 김동성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2010
  • 본 연구에서는 일련의 연구에서 수집된 영작문 오류 유형의 정제된 자료를 토대로 연관 규칙을 생성하고, 학습을 통해서 효용성이 검증된 연관 규칙을 활용해서 영작문 데이터의 형태 통사 오류를 자동으로 탐지한다. 영작문 데이터에서 형태 통사 오류를 찾아내는 작업은 많은 시간과 자원이 소요되는 작업이므로 자동화가 필수적이다. 기존의 연구들이 통계적 모델을 활용한 어휘적 오류에 치중하거나 언어 이론적 틀에 근거한 통사 처리에 집중하는 반면에, 본 연구는 데이터 마이닝을 통해서 정제된 데이터에서 연관 규칙을 생성하고 이를 검증한 후 형태 통사 오류를 감지한다. 이전 연구들에서는 이론적 틀에 맞추어진 규칙 생성이나 언어 모델 생성을 위한 대량의 코퍼스 데이터와 같은 다량의 지식 베이스 생성이 필수적인데, 본 연구는 적은 양의 정제된 데이터를 활용한다. 영작문 오류 유형의 형태 통사 연관 규칙을 생성하기 위해서 Apriori 알고리즘을 활용하였다. 알고리즘을 통해서 생성된 연관 규칙 중 잘못된 규칙이 생성될 가능성이 있으므로, 상관성 검정, 코사인 유사도와 같은 규칙 효용성의 통계적 검증을 활용해서 타당한 규칙만을 학습하였다. 이를 통해서 축적된 연관 규칙들을 영작문 오류를 자동으로 탐지하는 실험에 활용하였다.

  • PDF