• Title/Summary/Keyword: 어휘 자질

Search Result 103, Processing Time 0.028 seconds

Analysis of filtering performance of Korean and English spam-mails (한국어와 영어 스팸메일의 필터링 성능 분석)

  • Hwang Wun-Ho;Kang Sin-Jae;Kim Tae-Hee;Kim Hee-Jae;Kim Jong-Wan
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.389-396
    • /
    • 2006
  • 본 연구에서는 한국어와 영어 메일을 대상으로 2단계 스팸 메일 필터링 시스템을 구축하여 성능평가를 수행한다. 2단계 스팸 메일 필터링 시스템은 블랙리스트를 활용하는 1단계와 기계학습을 통한 지능적인 분류를 하는 2단계로 구성된다. 만약 새로 도착한 메일이 블랙리스트의 내용을 포함한다면 이 메일은 스팸 메일로 분류되고 그렇지 않은 메일은 2단계로 넘어가서 스팸 메일 여부를 판단하게 된다. 메일의 본문이 영어로 작성된 영어 스팸 메일을 일반 메일로부터 분류해내기 위해서는 우선 Stemming과 Stopping 기법을 이용하여 본문에서 정형화된 어휘정보들을 추출한다. 추출된 어휘정보들을 대상으로 속성벡터를 구축한 후 SVM 기계 학습을 시켜 SVM 분류기를 생성하여 지능적인 스팸 메일 필터링을 수행한다. 속성벡터를 구축할 때 기준이 되는 자질을 어떻게 선택하느냐에 따라 스팸 메일 필터링 시스템의 성능이 좌우된다. 따라서 SYM 기계 학습을 위한 속성벡터를 구축할 때 기준이 되는 자질을 선택하는 여러 알고리즘들을 적용하여 성능을 비교 분석한다. 그리고 한국어 스팸 메일 필터링 시스템과 비교하여 영어 스팸 메일 필터링 시스템의 전체적인 성능을 비교 분석한다.

  • PDF

An analysis of Speech Acts for Korean Using Support Vector Machines (지지벡터기계(Support Vector Machines)를 이용한 한국어 화행분석)

  • En Jongmin;Lee Songwook;Seo Jungyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.365-368
    • /
    • 2005
  • We propose a speech act analysis method for Korean dialogue using Support Vector Machines (SVM). We use a lexical form of a word, its part of speech (POS) tags, and bigrams of POS tags as sentence features and the contexts of the previous utterance as context features. We select informative features by Chi square statistics. After training SVM with the selected features, SVM classifiers determine the speech act of each utterance. In experiment, we acquired overall $90.54\%$ of accuracy with dialogue corpus for hotel reservation domain.

Secondary Grammaticalization and English Adverbial Tense (이차적 문법화와 영어부사의 시제)

  • Kim, Yangsoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.115-121
    • /
    • 2020
  • The primary aim of this paper is to discuss the historical development or grammaticalization of English adverbial -ly suffix and provide a diachronic analysis of manner adverbs and sentence adverbs from the perspective of secondary grammaticalization. The grammaticalization includes both the primary grammaticalization from a lexical to a grammatical and the secondary grammaticalization from a less grammatical to a more grammatical status. The emergence of the manner adverbs is due to the primary grammaticalization from OE adjectival suffix -lic to ME adverbial suffix -ly. In contrast, the emergence of sentence adverbs is due to the secondary grammaticalization from manner adverbs in VP domain to sentence adverbs in TP domain with grammatical features of tense and modality. This paper concludes that the secondary grammaticalization of the English adverbial -ly suffix includes the change from manner adverbs to sentence adverbs which obtain a new grammatical function of tense and modality.

Sentiment Classification of Movie Reviews using Levenshtein Distance (Levenshtein 거리를 이용한 영화평 감성 분류)

  • Ahn, Kwang-Mo;Kim, Yun-Suk;Kim, Young-Hoon;Seo, Young-Hoon
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.581-587
    • /
    • 2013
  • In this paper, we propose a method of sentiment classification which uses Levenshtein distance. We generate BOW(Bag-Of-Word) applying Levenshtein daistance in sentiment features and used it as the training set. Then the machine learning algorithms we used were SVMs(Support Vector Machines) and NB(Naive Bayes). As the data set, we gather 2,385 reviews of movies from an online movie community (Daum movie service). From the collected reviews, we pick sentiment words up manually and sorted 778 words. In the experiment, we perform the machine learning using previously generated BOW which was applied Levenshtein distance in sentiment words and then we evaluate the performance of classifier by a method, 10-fold-cross validation. As the result of evaluation, we got 85.46% using Multinomial Naive Bayes as the accuracy when the Levenshtein distance was 3. According to the result of the experiment, we proved that it is less affected to performance of the classification in spelling errors in documents.

Korean Part-of-Speech Tagging using Automatically Acquired Lexical Information (어휘 정보의 자동 추출과 이를 이용한 한국어 품사 태깅)

  • Kang, In-Ho;Kim, Do-Wan;Lee, Sin-Mok;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.117-122
    • /
    • 1999
  • 본 연구는 형태소 분석에 필요한 언어 지식과 품사 태깅에 필요한 확률 정보를 별도의 언어 지식 추가 없이 학습 말뭉치를 통해서 얻어내는 방법을 제안한다. 먼저 품사 부착된 학습 말뭉치로부터 형태소 사전과 결합 정보를 추출한다. 그리고 자주 발생하는 어절 및 해석상 모호성이 많은 어절에 대해서는 학습 말뭉치에서 발견된 형태소 분석 결과를 저장하여 형태소 분석에 소요되는 시간과 형태소 분석의 정확률을 높인다. 또한 미등록어의 많은 부분을 차지하는 인명, 지명, 조직명에 대해서는 정보 추출 분야에서 사용하는 고유 명사 분류법으로 해결한다. 품사 태깅을 위해서는 품사열 정보와 품사열 정보로는 해결할 수 없는 경우를 위한 어휘 정보를 학습 말뭉치에서 추출한다. 품사열 정보와 어휘 정보는 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용되어 품사 태깅 시스템을 위한 확률 분포를 구성한다. 본 연구에서 제안하는 방법은 학습 말뭉치를 기반으로 한다는 특성에 의해 다양한 영역에 사용하기 쉽다. 또한 어휘 정보로 품사 문맥 정보를 보완하기 때문에 품사 분류 체계와 형태소 해석 규칙에 영향을 적게 받는다는 장점을 가진다. MATEC '99 데이터 실험 결과 형태소 단위로 94%의 재현률과 93%의 정확률을 얻을 수 있었다.

  • PDF

Techniques for improving performance of POS tagger based on Maximum Entropy Model (최대 엔트로피 모텔 기반 품사 태거의 성능 향상 기법)

  • Cho, Min-Hee;Kim, Myoung-Sun;Park, Jae-Han;Park, Eui-Kyu;Ra, Dong-Yul
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.73-81
    • /
    • 2004
  • 한국어에서의 품사 결정 문제는 형태론적 중의성 문제도 있지만, 영어에는 발생하지 않는 동품사 중의성 문제로 더 까다롭다. 이러한 문제들은 어휘 문맥을 고려하지 않고서는 해결하기 어렵다. 통계 자료 부족 문제에 쉽게 대처하는 모델이 필요하며 문맥에 따른 품사를 결정하고자 할 때 서로 다른 형태의 여러 가지 어휘 문맥 정보를 반영할 수 있는 모델이 필요하다. 본 논문에서는 이런 점에 가장 적합한 최대 엔트로피(maximum entropy : ME) 모델을 품사태깅 작업에 이용하는 문제에 대해 다룬다. 어휘 문맥 정보를 이용하기 위한 자질함수가 매우 많아지는 문제에 대처하기 위해 필요에 따라 어휘 문맥 정보를 사전화 한다. 본 시스템의 특징으로는 어절 단위 품사 태깅을 위한 처리 기법. 어절의 형태소 분석열에 대한 어절 내부 확률 계산. ME 모델의 정규화 과정 생략에 의한 성능 향상, 디코딩 경로의 확장과 같은 점들이 있다. 실험을 통하여 본 연구의 기법이 높은 성능의 시스템을 달성할 수 있음을 알게 되었다.

  • PDF

Variable Vocabulary Word Recognizer using Phonetic Knowledge-based Allophone Model (음성학적 지식 기반 변이음 모델을 이용한 가변 어휘 단어 인식기)

  • Kim, Hoi-Rin;Lee, Hang-Seop
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.31-35
    • /
    • 1997
  • In this paper, we propose a variable vocabulary word recognizer that is able to recognize new words not exist in training data. For the variable vocabulary word recognizer, we must have an on-line lexicon generator to transform new candidate words to the corresponding pronunciation sequences of phones without any large lexicon table. And, we also must make outputs. In order to model the phones and allophones reliably, we define Korean allophones by triphone clustering based on phonetic knowledge of preceding and succeeding phones of each phone. Using the clustering method, we generated 1,548 allophones with POW (Phonetically Optimized Words) 3,848 word DB. We evaluated the proposed word recognizer with POW 3,848 DB, PBW (Phonetically Balanced Words) 445 DB, and 244 word DB in hotel reservation task. Experimental results showed word recognition accuracy of 79.6% for the POW DB corresponding to vocabulary-dependent case, 79.4% in case of 445 word lexicon and 88.9% in case of 100 word lexicon for the PBW DB, and 71.4% for the hotel reservation DB corresponding to vocabulary-independent case.

  • PDF

Construction of Dialog Engagement Model using MovieDic Corpus (MovieDic 말뭉치를 이용한 대화 참여 모델의 구성)

  • Koo, Sangjun;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.249-251
    • /
    • 2016
  • 다중 화자 대화 시스템에서, 시스템의 입장에서 어느 시점에 참여해야하는지를 아는 것은 중요하다. 이러한 참여 모델을 구축함에 있어서 본 연구에서는 다수의 화자가 대화에 참여하는 영화 대본으로 구축된 MovieDic 말뭉치를 사용하였다. 구축에 필요한 자질로써 의문사, 호칭, 명사, 어휘 등을 사용하였고, 훈련 알고리즘으로는 Maximum Entropy Classifier를 사용하였다. 실험 결과 53.34%의 정확도를 기록하였으며, 맥락 자질의 추가로 정확도 개선을 기대할 수 있다.

  • PDF

Ontology-Based Document Classification (온톨로지 기반 웹 문서 분류)

  • 송무희;임수연;민도식;강동진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.535-537
    • /
    • 2003
  • 본 논문에서는 웹 문서들이 가지는 용어 정보들과 어휘들의 의미구조를 계층적 형태로 표현한 온틀로지 기반 자동 문서분류 방법을 제안한다. 문서 분류는 문서들을 가장 잘 표현할 수 있는 자질들을 점하고 이러한 자질들을 통해 미리 정의된 2개 이상의 카테고리에 문서의 내용을 파악하여 가장 관련이 있는 카테고리로 할당하는 것이다. 본 논문에서는 웹 문서에서 추출한 용어 정보들의 유사도와 온톨로지 카테고리의 유사도를 계산하여 웹 문서를 분류하며, 문서 분류를 위한 실험데이터나 학습과정 없이 바로 실시간으로 문서분류가 이루어지며, 결과적으로 문서들이 가지는 고유한 의미와 관계의 식별을 통하여 보다 더 정확하게 문서분류를 가능하게 해준다.

  • PDF

Semantic Classification of Web Pages using Ontology Concept Structure (온톨로지의 개념구조에 의한 웹페이지의 의미적 분류)

  • Song, Mu-Hee;Lim, Soo-Yeon;Park, Seong-Bae;Kang, Dong-Jin;Lee, Sang-Jo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.487-489
    • /
    • 2005
  • 본 논문에서는 온톨로지의 개념구조를 이용한 웹페이지의 의미적 분류방법을 제안한다. 웹 문서들이 가지는 용어 정보들과 어휘들 간의 개념 구조를 파악하여 온톨로지를 확장시키면서 이를 문서분류에 적용하여 의미적 분류가 이루어지게 한다. 문서 분류는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고 이러한 자질들을 통해 미리 정의된 2개 이상의 카테고리에 문서의 내용을 파악하여 가장 관련이 있는 카테고리로 할당하는 것이다. 본 논문에서는 웹 문서에서 추출한 용어 정보들의 유사도와 온톨로지 카테고리의 유사도를 계산하여 웹 문서를 분류하여 문서 분류를 위한 실험데이터나 학습과정 없이 바로 실시간으로 문서분류가 이루어지며, 결과적으로 온톨로지와 문서들이 가지는 고유한 의미와 관계의 식별을 통하여 보다 더 정확하게 문서분류를 가능하게 해준다.

  • PDF