• Title/Summary/Keyword: 어휘학습시스템

Search Result 109, Processing Time 0.032 seconds

Development and Evaluation of a Document Summarization System using Features and a Text Component Identification Method (텍스트 구성요소 판별 기법과 자질을 이용한 문서 요약 시스템의 개발 및 평가)

  • Jang, Dong-Hyun;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.678-689
    • /
    • 2000
  • This paper describes an automatic summarization approach that constructs a summary by extracting sentences that are likely to represent the main theme of a document. As a way of selecting summary sentences, the system uses a model that takes into account lexical and statistical information obtained from a document corpus. As such, the system consists of two parts: the training part and the summarization part. The former processes sentences that have been manually tagged for summary sentences and extracts necessary statistical information of various kinds, and the latter uses the information to calculate the likelihood that a given sentence is to be included in the summary. There are at least three unique aspects of this research. First of all, the system uses a text component identification model to categorize sentences into one of the text components. This allows us to eliminate parts of text that are not likely to contain summary sentences. Second, although our statistically-based model stems from an existing one developed for English texts, it applies the framework to individual features separately and computes the final score for each sentence by combining the pieces of evidence using the Dempster-Shafer combination rule. Third, not only were new features introduced but also all the features were tested for their effectiveness in the summarization framework.

  • PDF

Automatically Registering Schedules from Text Messages on Handheld Devices (휴대폰 문자 메시지로부터 자동 일정 등록)

  • Kim, Hyung-Chul;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.86-93
    • /
    • 2010
  • 개인 휴대용 단말기의 보급률이 높아짐에 따라, SMS 메시지가 또 하나의 새로운 의사소통 수단으로 발전하였다. 특히 통화보다 가격이 저렴하고, 통화 후 따로 적어두지 않아도 자동으로 저장되는 특징으로 인해 약속 등을 정할 때 많은 도움이 된다. 본 논문은 일반적인 정보추출 방법을 적용하여 이러한 SMS 메시지에서 자동으로 약속 시간과 장소를 추출한다. 기계학습 기법으로는 CRF를 이용하였으며, 비속어나 신조어가 많고 줄임말이 많은 SMS 메시지의 특징상 토큰분리나 품사 부착 등의 전처리 언어엔진을 사용하지 않았으며, 대신 Bi-Gram 언어모델을 사용하였으며, 학습 시 사전이나 어휘 등의 다양한 자질들을 적용하여 시스템의 정확도를 높였다.

  • PDF

Automatic Generation of Named Entity Tagged Corpus using Web Search Engine (웹을 이용한 개체명 부착 말뭉치의 자동생성과 정제)

  • An, Joo-Hui;Lee, Seung-Woo;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.85-91
    • /
    • 2002
  • 최근 정보 추출, 질의응답 시스템 등의 고정밀 자연어처리 어플리케이션이 부각됨에 따라 개체명 인식의 중요성이 더욱 커지고 있다. 이러한 개체명 인식을 위한 학습에는 대용량의 어휘자료를 필요로 하기 때문에 충분한 학습 데이터, 즉 개체명 태그가 부착된 충분한 코퍼스가 제공되지 못하는 경우 자료희귀문제(data sparseness problem)로 인하여 목적한 효과를 내지 못하는 경우가 않다. 그러나 태그가 부착된 코퍼스를 생성하는 일은 시간과 인력이 많이 드는 힘든 작업이다. 최근 인터넷의 발전으로 웹 데이터는 그 양이 매우 많으며, 습득 또한 웹 검색 엔진을 사용해서 자동으로 모음으로써 다량의 말뭉치를 모으는 것이 매우 용이하다. 따라서 최근에는 웹을 무한한 언어자원으로 보고 웹에서 필요한 언어자원을 자동으로 뽑는 연구가 활발히 진행되고 있다. 본 연구는 이러한 연구의 첫 시도로 웹으로부터 다량의 원시(raw) 코퍼스를 얻어 개체명 태깅 학습을 위한 태그 부착 코퍼스를 자동으로 생성하고 이렇게 생성된 말뭉치를 개체면 태깅 학습에 적용하는 비교 실험을 통해 수집된 말뭉치의 유효성을 검증하고자 한다. 향후에는 자동으로 웹으로부터 개체 명 태깅 규칙과 패턴을 뽑아내어 실제 개체명 태거를 빨리 개발하여 유용하게 사용할 수 있다.

  • PDF

A method to sequentially use lexical features for effective sentiment categorization of Korean Customer Reviews (효과적인 상품평 감정 분류를 위한 어휘 자질의 순차적 사용 방법)

  • Shin, Jun-Soo;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.151-154
    • /
    • 2009
  • 인터넷이 크게 발전하면서 현재는 인터넷으로 쉽게 쇼핑을 할 수 있다. 이 때 물건의 구입에 큰 영향력을 미치는 것이 바로 그 물건의 상품평이다. 하지만 실제로 수많은 상품평을 사용자가 일일이 확인하고 판단하는 데에는 많은 시간이 소모된다. 이러한 문제점을 해결하기 위해서 본 논문에서는 상품평 문장을 일반, 긍정, 부정의 세 단계로 나누는 시스템을 제안한다. 감정을 판단하는데 중요한 역할을 하는 품사에 따라 우선순위를 달리하여 자질을 추출한다. 추출된 자질을 사용하여 Paul Graham을 사용하여 가중치를 계산하고 기계학습을 한다. 실험은 일반과 감정(긍정, 부정)으로 분류하는 실험과 긍정과 부정으로 분류하는 실험을 하였다. 실험 결과 품사에 우선순위를 사용하여 만든 시스템이 기본 시스템보다 더 적은 자질을 사용하고 더 높은 성능을 보였다.

  • PDF

A Splog Detection System Using Support Vector Machines and $x^2$ Statistics (지지벡터기계와 카이제곱 통계량을 이용한 스팸 블로그(Splog) 판별 시스템)

  • Lee, Song-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.905-908
    • /
    • 2010
  • Our purpose is to develope the system which detects splogs automatically among blogs on Web environment. After removing HTML of blogs, they are tagged by part of speech(POS) tagger. Words and their POS tags information is used as a feature type. Among features, we select useful features with $x^2$ statistics and train the SVM with the selected features. Our system acquired 90.5% of F1 measure with SPLOG data set.

  • PDF

Generalized Binary Second-order Recurrent Neural Networks Equivalent to Regular Grammars (정규문법과 동등한 일반화된 이진 이차 재귀 신경망)

  • Jung Soon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.107-123
    • /
    • 2006
  • We propose the Generalized Binary Second-order Recurrent Neural Networks(GBSRNNf) being equivalent to regular grammars and ?how the implementation of lexical analyzer recognizing the regular languages by using it. All the equivalent representations of regular grammars can be implemented in circuits by using GSBRNN, since it has binary-valued components and shows the structural relationship of a regular grammar. For a regular grammar with the number of symbols m, the number of terminals p, the number of nonterminals q, and the length of input string k, the size of the corresponding GBSRNN is $O(m(p+q)^2)$ and its parallel processing time is O(k) and its sequential processing time, $O(k(p+q)^2)$.

  • PDF

Learning of Artificial Neural Networks about the Prosody of Korean Sentences. (인공 신경망의 한국어 운율 학습)

  • Shin Dong-Yup;Min Kyung-Joong;Lim Un-Cheon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.121-124
    • /
    • 2001
  • 음성 합성기의 합성음의 자연감을 높이기 위해 자연음에 내재하는 정확한 운율 법칙을 구하여 음성합성 시스템에서 이를 구현해 주어야 한다 무제한 어휘 음성합성 시스템의 문-음성 합성기에서 필요한 운율 법칙은 언어학적 정보를 이용해 구하거나, 자연음에서 추출하고 있다 그러나 추출한 운율 법칙이 자연음에 내재하는 모든 운율 법칙을 반영하지 못했거나, 잘못 구현되는 경우에는 합성음의 자연성이 떨어지게 된다. 이런 점을 고려하여 본 논문에서는 한국어 자연음을 분석하여 추출한 운율 정보를 인공 신경망이 학습하도록 하고 훈련을 마친 인공 신경망에 문장을 입력하고, 출력으로 나오는 운율 정보와 자연음의 운율 정보를 비교한 결과 제안한 인공 신경망이 자연음에 내재하고 있는 운율을 학습할 수 있음을 알 수 있었다. 운율의 3대 요소는 피치 , 지속시간, 크기의 변화이다. 제안한 인공 신경망이 한국어 문장의 음소 열을 입력으로 받아들이고, 각 음소의 지속시간에 따른 피치변화와 크기 변화를 출력으로 내보내면 자연음을 분석해 구한 각 음소의 운율 정보인 목표 패턴과 출력 패턴 의 오차를 최소화하도록 인공 신경망의 가중치를 조절할 수 있도록 설계하였다. 지속시간에 따른 각 음소의 피치와 크기 변화를 학습시키기 위해 피치 및 크기 인공 신경망을 구성하였다. 이들 인공 신경망을 훈련시키기 위해 먼저 음소 균형 문장 군을 구축하여야 하고, 이들 언어 자료를 특정 화자가 일정 환경에서 읽고 이를 녹음하여 , 분석하여 구한운율 정보를 운율 데이터베이스로 구축하였다. 문장 내의 각 음소에 대해 지속 시간과 피치 변화 그리고 크기 변화를 구하고, 곡선 적응 방법을 이용하여 각 변화 곡선에 대한 다항식 계수와 초기 값을 구해 운율 데이터베이스를 구축한다. 이 운율 데이터베이스의 일부는 인공 신경망을 훈련시키는데 이용하고, 나머지로 인공 신경망의 성능을 평가하여 인공 신경망이 운율 법칙을 학습할 수 있었다. 언어 자료의 문장 수를 늘리고 발음 횟수를 늘려 운율 데이터베이스를 확장하면 인공 신경망의 성능을 높일 수 있고, 문장 내의 음소의 수를 감안하여 인공 신경망의 입력 단자의 수는 계산량과 초분절 요인을 감안하여 결정해야 할 것이다

  • PDF

An analysis of Speech Acts for Korean Using Support Vector Machines (지지벡터기계(Support Vector Machines)를 이용한 한국어 화행분석)

  • En Jongmin;Lee Songwook;Seo Jungyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.365-368
    • /
    • 2005
  • We propose a speech act analysis method for Korean dialogue using Support Vector Machines (SVM). We use a lexical form of a word, its part of speech (POS) tags, and bigrams of POS tags as sentence features and the contexts of the previous utterance as context features. We select informative features by Chi square statistics. After training SVM with the selected features, SVM classifiers determine the speech act of each utterance. In experiment, we acquired overall $90.54\%$ of accuracy with dialogue corpus for hotel reservation domain.

Determination of an Optimal Sentence Segmentation Position using Statistical Information and Genetic Learning (통계 정보와 유전자 학습에 의한 최적의 문장 분할 위치 결정)

  • 김성동;김영택
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.38-47
    • /
    • 1998
  • The syntactic analysis for the practical machine translation should be able to analyze a long sentence, but the long sentence analysis is a critical problem because of its high analysis complexity. In this paper a sentence segmentation method is proposed for an efficient analysis of a long sentence and the method of determining optimal sentence segmentation positions using statistical information and genetic learning is introduced. It consists of two modules: (1) decomposable position determination which uses lexical contextual constraints acquired from a training data tagged with segmentation positions. (2) segmentation position selection by the selection function of which the weights of parameters are determined through genetic learning, which selects safe segmentation positions with enhancing the analysis efficiency as much as possible. The safe segmentation by the proposed sentence segmentation method and the efficiency enhancement of the analysis are presented through experiments.

  • PDF

A Model of English Part-Of-Speech Determination for English-Korean Machine Translation (영한 기계번역에서의 영어 품사결정 모델)

  • Kim, Sung-Dong;Park, Sung-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.53-65
    • /
    • 2009
  • The part-of-speech determination is necessary for resolving the part-of-speech ambiguity in English-Korean machine translation. The part-of-speech ambiguity causes high parsing complexity and makes the accurate translation difficult. In order to solve the problem, the resolution of the part-of-speech ambiguity must be performed after the lexical analysis and before the parsing. This paper proposes the CatAmRes model, which resolves the part-of-speech ambiguity, and compares the performance with that of other part-of-speech tagging methods. CatAmRes model determines the part-of-speech using the probability distribution from Bayesian network training and the statistical information, which are based on the Penn Treebank corpus. The proposed CatAmRes model consists of Calculator and POSDeterminer. Calculator calculates the degree of appropriateness of the partof-speech, and POSDeterminer determines the part-of-speech of the word based on the calculated values. In the experiment, we measure the performance using sentences from WSJ, Brown, IBM corpus.

  • PDF