• Title/Summary/Keyword: 어휘지식

Search Result 144, Processing Time 0.026 seconds

Semantic Information Retrieval based on User-Word Intelligent Network(U-Win) and KISTI-STA (U-WIN(사용자어휘지능망) 기반의 의미적 정보검색과 KISTI-STA)

  • Choe, Ho-Seop;Yun, Hwa-Muk;Ok, Cheol-Yeong
    • STIMA Bulletin
    • /
    • s.6
    • /
    • pp.27-34
    • /
    • 2007
  • 정보검색서비스는 '사용자가 얼마나 편리하게 검색할 수 있는가'와 '검색 결과에 얼마나 만족하는가'가 중요한데, 이는 정보검색 기술 개발에서 가장 중요하게 고려해야 할 사항이다. 본고는 과학기술 지식정보를 대상으로, 어휘망과 온톨로지적 성격을 가지고 있는 U-WIN을 기반으로 의미적인 정보검색 서비스가 가능하도록 하기 위하여, 한국과학기술정보연구원(KISTI)에서 개발 중인 U-WIN을 이용한 의미적 정보검색 기술과 시범서비스인 KISTI-STA를 소개한다.

  • PDF

SPHINX : Hidden Markov Model 기반 음성인식 시스템

  • Kim, Myeong-Won;Lee, Yeong-Jik;Jeon, In-Heng
    • Electronics and Telecommunications Trends
    • /
    • v.5 no.2
    • /
    • pp.63-77
    • /
    • 1990
  • HMM(Hidden Markov Model)은 음성을 기술하는데 적합한 model이다. 본 고는 최근 CMU에서 개발한 HMM에 기반을 둔 화자독립, 연속음성 system인 SPIHNX에 대하여 기술한다. SPHINX는 단순한 음소의 HMM model을 적용한 baseline SPHINX로부터 시작하여 새로운 지식의 추가 및 음성단위의 조정 등을 통하여 지속적으로 그 성능이 개선되어 왔다. SPHINX의 최종 version은 어휘 약 1000단어 정도의 재원 관리에 관한 질문 형태의 문장을 인식하는데 96%의 높은 인식율을 보인다. SPHINX는 가장 발전된 음성인식 시스템의 하나이며 이는 화자독립, 대용량어휘의 연속음성 인식 시스템의 실현 가능성을 제시한다.

Word Sense Disambiguation Method Using Co-occurrence Information (공기정보를 이용한 단어 의미 중의성 해결 방안)

  • Park, Yo-Sep;Kim, Gyeong-Im;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.177-178
    • /
    • 2010
  • 단어 의미 중의성은 자연언어처리 분야에서의 주요 관심 분야이다. 한국어에서의 단어 의미 중의성 문제는 다른 언어에 비하여 연구가 미흡한 상태이다. 기존 연구에서는 빈도 수에 기반한 공기 정보 벡터를 이용한 방법에서 처리되지 못하는 경우가 발생하였다. 또한 사전에 기반한 상위어 추출 시에 정형화된 형태가 아닌 경우에 어려움이 발생하였다. 본 논문에서는 상호정보량을 추가하여 공기 정보 처리 과정 시에 발생하는 오류를 최소화 하였다. 또한 대상 명사의 상위어 추출 문제를 해결하기 위해 어휘 지식 베이스를 적용하였다.

  • PDF

Answer Suggestion for Knowledge Search (지식검색의 답변 추천 시스템)

  • Lee, Hochang;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.201-205
    • /
    • 2012
  • 지식검색은 방대한 지식정보 데이터를 바탕으로 사용자의 질문에 대한 답변을 검색하는 시스템이다. 이러한 사용자 참여로 구축된 지식정보는 잘못된 답변으로 인한 신뢰성 부족과 중복 답변 등의 문제점이 있어, 원하는 답변을 찾기 위해서는 지식검색에서 다수의 답변을 읽고 그 답변의 진위여부를 판단해야만 한다. 만일 정답에 포함되는 단어나 어구가 답변들에서 나타내는 통계적 특성을 활용하여 사용자가 원하는 답변을 제시할 수 있다면, 지식검색의 효용성과 신뢰성이 크게 향상될 수 있다. 본 논문에서는 지식정보 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 각 분류에 대한 사용자 질의어의 답변을 요약하는 방식을 제안한다. 단어, 목록, 글 유형은 TF와 IDF, 어휘 간의 거리 정보를 통해서 중요 단어를 추출하여 각 유형에 적합한 형식의 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로서 제시한다.

  • PDF

Unsupervised Korean Word Sense Disambiguation using CoreNet (코어넷을 활용한 비지도 한국어 어의 중의성 해소)

  • Han, Kijong;Nam, Sangha;Kim, Jiseong;Hahm, YoungGyun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.153-158
    • /
    • 2017
  • 본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.

  • PDF

Unsupervised Korean Word Sense Disambiguation using CoreNet (코어넷을 활용한 비지도 한국어 어의 중의성 해소)

  • Han, Kijong;Nam, Sangha;Kim, Jiseong;Hahm, YoungGyun;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.153-158
    • /
    • 2017
  • 본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.

  • PDF

The Design of Text and Dictionary Management System (텍스트 및 전자사전 관리시스템의 설계)

  • Lee, Jae-Sung;Choi, Byung-Jin;Lee, Woon-Jae;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.408-414
    • /
    • 1996
  • 자연언어처리 프로그램에서 어휘지식을 제공하는 전자사전은 그 중요성에 비해 작성 및 관리에 불편함이 많다. 본 논문에서는 전자사전의 작성 및 관리를 편리하게 할 수 있도록, 다양한 형태의 어휘 자료로부터 필요한 정보를 추출, 변형하고, 편집할 수 있는 텍스트 및 사전 관리시스템(TDMS: Text and Dictionary Management System)의 설계에 관하여 소개한다. TDMS에서는 SGML(Standard General Markup Language)의 일부를 사용하여, 표준사전 표기언어(SDML: Standard Dictionary Markup Language)를 정의하고, 이를 이용하여 다양한 형태의 사전 형식을 기술하고 있다. 또, 표준사전 표기언어로 표현된 사전이나 텍스트는 각종 응용프로그램에 독립적인 형태로 존재하여, 정보의 표준화와 교환을 용이하게 한다.

  • PDF

Design of a Contextual Lexical Knowledge Graph Extraction Algorithm (맥락적 어휘 지식 그래프 추출 알고리즘의 설계)

  • Nam, Sangha;Choi, Gyuhyeon;Hahm, Younggyun;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

Design of a Contextual Lexical Knowledge Graph Extraction Algorithm (맥락적 어휘 지식 그래프 추출 알고리즘의 설계)

  • Nam, Sangha;Choi, Gyuhyeon;Hahm, Younggyun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체 중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

Knowledge-Based Question Answering System for Aquisition of Concept Word (개념어의 습득을 위한 지식기반 질의응답 시스템)

  • Lee, Jae-Hong;Choe, Ho-Seop;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.95-100
    • /
    • 2003
  • 본 논문에서는 현실 세계가 가지고 있는 지식이 어느 정도 체계적으로 정제되어 있는 국어사전, 백과사전 등을 중심으로, Hybrid Method를 이용한 통계(Statistics)기반 지식베이스와 어휘분류(Lexicon Classification)기반 지식베이스를 효율적으로 구축하여 질의응답시스템에 활용한다. 또한 특정한 문서를 보여주는 일반적인 질의응답시스템과는 달리, 이러한 지식베이스를 이용하여 사용자에게 정확한 개념어(정답어)를 습득하게끔 해주고, 사용자의 인지 체계 속에 어렴풋이 내포되어 있는 개념적 지식을 더욱더 표면적으로 확장해 나갈 수 있는 질의응답시스템을 구축하는 방안을 제시한다.

  • PDF