Kim, Young-Kil;Yang, Sung-Il;Hong, Mun-Pyo;Park, Sang-Kyu
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.63-68
/
2003
본 논문에서는 형태소 분석 대상 어절의 좌우 어절내의 대표 형태소 어휘 문맥 정보에 기반한 형태소 오류 정정 방안을 제안한다. 현재까지 주변의 품사열 문맥 정보에만 의존하는 기존의 품사 태깅 모델과 달리 주변 어휘를 반영할 수 있는 좌우 어절 문맥을 이용해 형태소 태거의 성능을 향상시킬 수 있는 방법들이 제시되었다. 그러나 이러한 어절 문맥에 의한 지속적인 성능 향상을 위해서는 대량의 품사 태킹 문맥 정보를 필요로 한다. 따라서 본 논문에서는 이러한 자료 부족 문제를 해결하기 위하여 기존의 분석 대상 어절 좌우의 어절 단위의 어휘 문맥 정보가 아닌 좌우 어절내의 대표 형태소 단위의 형태소 어휘 문맥을 이용한 품사 태깅 오류 정정 방안을 제안한다. 실험을 통해, 형태소 어휘 단위의 문맥 정보의 적용성(Coverage)의 높고 기존의 품사 문맥 정보 기반의 형태소 분석기의 태깅 오류를 정정하여 그 정확성을 크게 향상시킬 수 있음을 보인다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.13-16
/
2022
LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.
Since a natural language has inherently structural ambiguities, one of the difficulties of parsing is resolving the structural ambiguities. Recently, a probabilistic approach to tackle this disambiguation problem has received considerable attention because it has some attractions such as automatic learning, wide-coverage, and robustness. In this paper, we focus on Korean probabilistic parsing model using head co-occurrence. We are apt to meet the data sparseness problem when we're using head co-occurrence because it is lexical. Therefore, how to handle this problem is more important than others. To lighten the problem, we have used the restricted and simplified phrase-structure grammar and back-off model as smoothing. The proposed model has showed that the accuracy is about 84%.
Proceedings of the Korean Society for Cognitive Science Conference
/
2006.06a
/
pp.33-37
/
2006
본 논문은 어휘판단과제(LDT: Lexical Decision Task)시 나타나는 여러 언어현상 중 단어빈도효과(word frequency effect)와 단어유사성효과(word similarity effect)를 한국어에 적용시켜 인간과 계산주의적 모델을 통해 실험하고, 결과를 비교하였다. 실험결과 인간과 계산주의적 모델 각각 한국어에 대해 단어빈도효과와 단어 유사성효과를 보였으며, 인간의 실험결과와 계산주의적 모델의 결과가 유의미한 유사성을 나타내었다.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.21-31
/
1996
복합명사는 한국어에서 가장 빈번하게 나타나는 색인어의 한 형태로서, 영어권 중심의 정보검색 모델로는 다루기가 어려운 언어 현상의 하나이다. 복합명사는 2개 이상의 단일어들의 조합으로 이루어져 있고, 그 형태 또한 여러 가지로 나타나기 때문에 색인과 검색의 큰 문제로 여겨져 왔다. 본 논문에서는 복합명사의 어휘적 정보를 단위명사들의 통계적 행태(statistical behavior)에 기반 하여 자동 획득하고, 이러한 어휘적 정보를 검색에 적용하는 모텔을 제시하고자 한다. 본 방법은 색인시의 복합명사 인식의 어려움과 검색시의 형태의 다양성을 극복하는 모델로서 한국어를 포함한 동양권의 언어적 특징을 고려한 모델이다.
본 논문은 어휘판단과제(LDT: Lexical Decision Task)시 나타나는 여러 언어현상 중 단어빈도효과(word frequency effect)와 단어유사성효과(word similarity effect)를 한국어에 적용시켜 인간과 계산 주의적 모델을 통해 실험하고, 결과를 비교하였다. 실험결과 인간과 계산주의적 모델 각각 한국어에 대해 단어빈도효과와 단어 유사성효과를 보였으며, 인간의 실험결과와 계산주의적 모델의 결과가 유의미한 유사성을 나타내었다.
Kim, Yongil;Oh, Yuri;Sim, Woochul;Ko, Bongsoo;Lee, Bonggun
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.347-350
/
2019
인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.313-319
/
2022
최근 BERT와 같은 트랜스포머 (Transformer) 기반의 모델이 natural language understanding (NLU)와 같은 여러 자연어 처리 태스크에서 좋은 성능을 보인다. 이러한 모델은 여전히 대용량의 학습을 요구한다. 일반적으로, 데이터 증강 기법은 low-resource 환경을 개선하는 데 도움을 준다. 최근 생성 모델을 활용해 합성 데이터를 생성해 데이터를 증강하는 시도가 이루어졌다. 이러한 방법은 원본 문장과 의미론적 유사성을 훼손하지 않으면서 어휘와 구조적 다양성을 높이는 것을 목표로 한다. 본 논문은 task-oriented 한 어휘와 구조를 고려한 데이터 증강 방법을 제안한다. 이를 위해 검색 모델과 사전 학습된 생성 모델을 활용한다. 검색 모델을 사용해 학습 데이터셋의 입력 문장과 유사한 문장 쌍을 검색 (retrieval) 한다. 검색된 유사한 문장 쌍을 사용하여 생성 모델을 학습해 합성 데이터를 생성한다. 본 논문의 방법론은 low-resource 환경에서 베이스라인 성능을 최대 4% 이상 향상할 수 있었으며, 기존의 데이터 증강 방법론보다 높은 성능 향상을 보인다.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.21-24
/
1999
본 논문에서는 가변어휘 음성인식기의 성능개선 작업에 관한 내용을 기술하고 있다. 묵음을 포함한 총 40개의 문맥독립 음소모델을 사용한다. LDA 기법을 이용하여 동일차수의 특징벡터내에 보다 유용한 정보를 포함시키고, likelihood 계산시 가우시안 분포와 mixture weight에 대한 가중치를 달리 함으로써 성능향상을 볼 수 있었다. ETRI POW 3848 DB만을 사용하여 실험한 경우, $21.7\%$의 오류율 감소를 확인할 수 있었다. 잡음환경 및 어휘독립환경을 고려하여 POW 3848 DB와 PC 168 DB 및 PBW445 DB를 사용한 실험도 행하였으며, PBW 445 DB를 사용한 어휘독립 인식실험의 경우 $56.8\%$의 오류율 감소를 얻을 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.295-298
/
2010
본 논문에서는 어휘정보를 사용하는 한국어 구문분석 성능과 거의 비슷한 성능을 내는 비어휘정보 한국어 의존 구문분석에 대해서 설명한다. 본 논문에서는 어휘정보를 대신해서 품사정보와 어절 구문태그 정보를 사용하고 CRFs를 사용하여 레이블링 방법으로 구문분석 한다. 자질을 변경하여 어절 처음에 나타나는 용어 정보와 뒤 어절의 용언 정보를 추가하였다. 본 논문에서 제시하는 실험 결과(어절:85.73%, 문장:43.86%)는 현재 최고의 성능을 내는 어휘정보 사용 한국어 구문분석과 비슷하다. 본 논문에서 제안한 비어휘정보 구문분석 방법은 어휘정보 구문분석에 비해 모델 사이즈가 작고 처리방법이 간단하여 쉽게 다른 도메인에 적용이 가능할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.