• 제목/요약/키워드: 어휘단위

검색결과 140건 처리시간 0.03초

연속 어휘 인식 시스템에서 어휘 클러스터링 모델의 성능 지원을 위한 검색 시스템 (Retrieve System for Performance support of Vocabulary Clustering Model In Continuous Vocabulary Recognition System)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제10권9호
    • /
    • pp.339-344
    • /
    • 2012
  • 기존의 연속 어휘 인식 시스템에서는 의사 결정 트리 기반 공유 모델링 방법을 사용하여 인식률 향상 시킬 수 있었으나 이들 음소 데이타에 대한 검색을 지원할 수 없는 문제로 인해 시스템 모델의 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 연속 어휘 클러스터링 모델에서 음소 단위로 확률 모델을 검색할 수 있는 시스템을 모델링하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 95.88%의 인식률을 나타내었다.

어휘의미분석 말뭉치 구축의 절차와 문제 (Procedures and Problems in Compiling a Disambiguated Tagged Corpus)

  • 신지현;최민우;강범모
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.479-486
    • /
    • 2001
  • 동음이의어 간의 서로 다른 의미를 효율적으로 변별해 줄 수 있는 방법 중 하나로 어휘의미분석 말뭉치의 활용을 들 수 있다. 이는 품사 단위의 중의성을 해소해 줄 수 있는 형태소 분석 말뭉치를 기반으로, 이 단계에서 해결하지 못하는 어휘적인 중의성을 해결한 것으로, 보다 정밀한 언어학적 연구와 단어 의미의 중의성 해결(word sense disambiguation) 등 자연언어처리 기술 개발에 사용될 수 있는 중요한 언어 자원이다. 본 연구는 실제로 어휘의미분석 말뭉치를 구축하기 위한 기반 연구로서, 어휘의미분서 말뭉치의 설계와 구축 방법론상의 제반 사항을 살펴보고, 중의적 단어들의 분포적 특징과 단어의 중의성 해결 단계에서 발생할 수 있는 문제점을 지적하고, 아울러 그 해결 방법을 모색해 의는 것을 목적으로 한다.

  • PDF

어휘적 중의성 제거 규칙과 부분 문장 분석을 이용한 한국어 문법 검사기 (A Korean Grammar Checker using Lexical Disambiguation Rule and Partial Parsing)

  • 소길자;권혁철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권3호
    • /
    • pp.305-315
    • /
    • 2001
  • 본 논문에서는 우리말 문서에 있는 오류를 어절 단위로 검증하는 철자 오류와 여러 어절을 분석해야 처리할 수 있는 문법 오류로 분류하였다. 문법 오류를 처리할 때 전체 문장 분석은 시간이 많이 소요되고 구현하기 어려우므로 대부분 부분 문장 분석 방법을 이용한다. 기존 연구에서 사용한 부분 문장 분석은 분석 어절에 어휘 중의성이 있을 때 문장 분석 종결 또는 과분석 등의 오류가 발생한다. 본 논문에서는 문법 검사기에서 어휘 중의성 때문에 발생하는 문제점을 해결하는 방법으로 어휘 중의성 제거 규칙을 사용한다. 본 논문에서 구현한 어휘 중의성 제거 모듈은 코퍼스 데이타에서 얻은 경험적 규칙을 기반으로 한다. 이 경험적 규칙은 언어적 지식을 기반으로 한다.

  • PDF

통계적 모델에 의한 연속 숫자음의 인식 기술개발 (Development of Continuous Spoken Digit Recognition System using Statistical Model)

  • 이강성;안태옥;김순협
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1989년도 한글날기념 학술대회 발표논문집
    • /
    • pp.154-158
    • /
    • 1989
  • 본 연구는 통제적 모델에 의한 연속 숫자음의 인식에 관한 것으로 4 연속 숫자음을 인식 대상으로하여 실험한다. 시스템은 크게 음향 음성 처리부 및 어휘 해석부 두 부분으로 나뉜다. 음향 음성 처리부에서는 입력 음성으로부터 특정 벡터인 12차의 LPC cepstrum 계수를 구하여, 프레임 레이블링과 소음소 레이블링 (phone labelling)을 한다. 프레임 레이블링인 베이스 분류법을 이용하였으며, 소음소 레이블링은 프레임 레이블과 사후확률 (posteriori probability)로 부터 이루어 졌다. 어휘 해석부분에서는 소음소 단위를 입력으로 받아 음운규칙을 통해 작성된 소음소 망을 거쳐 연속 숫자음 출력을 얻도록 했다. 본실험은 화자 3 명이 발음한 35 개의 4 연속 숫자음을 인식 대상으로 하였으며, 4 연속 숫자음을 평가단위로 80%의 인식율을 얻었고, 각 숫자음의 음절을 단위로 95%의 인식율을 얻어 제시한 알고리즘의 유효성을 입증하였다.

  • PDF

GMM 음소 단위 파라미터와 어휘 클러스터링을 융합한 음성 인식 성능 향상 (Speech Recognition Performance Improvement using a convergence of GMM Phoneme Unit Parameter and Vocabulary Clustering)

  • 오상엽
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.35-39
    • /
    • 2020
  • DNN은 기존의 음성 인식 시스템에 비해 에러가 적으나 병렬 훈련이 어렵고, 계산의 양이 많으며, 많은 양의 데이터 확보를 필요로 한다. 본 논문에서는 이러한 문제를 효율적으로 해결하기 위해 GMM에서 모델 파라메터를 가지고 음소별 GMM 파라메터를 추정하여 음소 단위를 생성한다. 그리고 이를 효율적으로 적용하기 위해 특정 어휘에 대한 클러스터링을 통해 성능을 향상시키기 위한 방법을 제안한다. 이를 위해 3가지 종류의 단어 음성 데이터베이스를 이용하여 DB를 가지고 어휘 모델을 구축하였고, 잡음 처리는 워너필터를 사용한 특징을 추출하여 음성 인식실험에 사용하였다. 본 논문에서 제안한 방법을 사용한 결과 음성 인식률에서 97.9%의 인식률을 나타내었다. 본 연구에서 개선된 오버피팅의 문제점을 향상시킬 수 있는 추가적인 연구를 필요로 한다.

유아의 성별과 놀이상황 유형별 평균발화길이와 어휘다양도 (Analysis on Preschoolers' Mean Length of Utterance and Type-Token Ratio by their Sex and Play Situation Type)

  • 성미영;장문수
    • 한국보육지원학회지
    • /
    • 제10권6호
    • /
    • pp.43-56
    • /
    • 2014
  • 본 연구에서는 자발적인 발화를 통해 유아의 구어 발화 특성을 분석하기 위해 놀이상황 유형별 구어 발화 자료를 수집하고, 구어 발화의 특성을 어절, 단어, 형태소 단위 평균발화길이와 어휘다양도로 구분하여 분석하고자 하였다. 이를 위해 본 연구에서는 5세 유아 32명을 대상으로 또래와의 친숙한 놀이상황 및 낯선 놀이상황에서의 대화를 수집하였다. 수집된 언어자료는 CSB(2014) 프로그램에 의해 전사 및 분석되었다. 본 연구의 결과는 다음과 같다. 첫째, 친숙한 놀이상황에서 여아의 어절, 단어, 형태소 단위 평균발화길이는 남아보다 더 긴 것으로 나타났다. 둘째, 유아의 단어 단위 평균발화길이는 친숙한 놀이상황보다 낯선 놀이상황에서 더 긴 것으로 나타났으며, 어휘다양도도 친숙한 놀이상황보다 낯선 놀이상황에서 더 높은 것으로 나타났다. 이와 같은 연구결과에 기초하여 유아의 자발적 발화 수집, 전사 및 분석프로그램의 중요성에 대해 논의한 후 향후 과제와 제언을 제시하였다.

어휘 자질 기반 기계 학습을 사용한 한국어 암묵 인용문 인식 (Recognition of Korean Implicit Citation Sentences Using Machine Learning with Lexical Features)

  • 강인수
    • 한국산학기술학회논문지
    • /
    • 제16권8호
    • /
    • pp.5565-5570
    • /
    • 2015
  • 암묵인용문 인식은 학술문헌의 본문 텍스트 내에서 명시적 인용표지가 누락된 인용문장을 자동 인식하는 것으로 인용 기반 논문 검색 및 요약의 핵심 기술이다. 기존 암묵인용문 인식의 최신 연구들은 단어 ngram, 단서어구, 명시인용문과의 거리, 기존 연구자의 성, 기존 방법의 명칭 등 다양한 자질을 활용하여 50% 이상 인식 수준을 보고하고 있다. 그러나 대부분의 기존 연구들은 영어에 대해 수행되었으며 한국어의 경우 최근 긍정/부정 단서어구 패턴을 활용한 규칙 기반 시도에서 42% 성능 수준이 보고되어 있어 추가 성능 향상이 요구되는 상황이다. 이 연구에서는 한국어 어휘 자질을 사용하여 한국어 암묵인용문의 기계학습 기반 인식을 시도하였다. 이를 위해 어절, 형태소, 음절 단위에 기반한 다양한 크기의 어휘 ngram 자질들의 인식 성능을 비교 평가하고 한국어 암묵인용문 인식에 적합한 어휘 자질로 형태소 1gram 및 음절 2gram 단위를 결정하였다. 또한 이들 어휘 자질들을 전후 명시인용문들과의 인접성을 표현한 위치 자질들과 결합하여 한국어 암묵인용문 인식 성능을 50% 이상 수준으로 대폭 향상시켰다.

대화 수준 FrameNet 구축을 위한 생략된 프레임 논항 복원 연구 (A Study of Null Instantiated Frame Element Resolution for Construction of Dialog-Level FrameNet)

  • 노영빈;허철훈;함영균;정유성;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.227-232
    • /
    • 2020
  • 본 논문은 의미역 주석(Semantic Role Labeling) 자원인 FrameNet을 준구어 말뭉치인 드라마 대본에 주석하는 과정과 주석 결과에 대해 서술한다. 본 논문에서는 프레임 - 프레임 논항 구조의 주석 범위를 한 문장에서 여러 발화로 이루어진 장면 (Scene) 단위의 대본으로 확장하여 문장 내에서 생략된 프레임 논항(Null-Instantiated Frame Elements)을 장면 단위 대본 내의 다른 발화에서 복원하였다. 본 논문은 프레임 자동 분석기를 통해 동일한 드라마의 한국어, 영어 대본에 FrameNet 주석을 한 드라마 대본을 선발된 주석자에 의해 대상 어휘 적합성 평가, 프레임 적합성 평가, 생략된 프레임 논항 복원을 실시하고, 자동 주석된 대본과 주석자 작업 후의 대본 결과를 비교한 결과와 예시를 제시한다. 주석자가 자동 주석된 대본 중 총 2,641개 주석 (한국어 1,200개, 영어 1,461개)에 대하여 대상 어휘 적합성 평가를 실시하여 한국어 190개 (15.83%), 영어 226개 (15.47%)의 부적합 대상 어휘를 삭제하였다. 프레임 적합성 평가에서는 대상 어휘에 자동 주석된 프레임의 적합성을 평가하여 한국어 622개 (61.68%), 영어 473개 (38.22%)의 어휘에 대하여 새로운 프레임을 부여하였다. 생략된 프레임 논항을 복원한 결과 작업된 평균 프레임 논항 개수가 한국어 0.780개에서 2.519개, 영어 1.290개에서 2.253개로 증가하였다.

  • PDF

글의 응집성을 포착하기 위한 개연규칙 (Abductive Rules for Text Cohesion)

  • 김곤;양재군;김민찬;배재학
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.517-520
    • /
    • 2004
  • 본 논문에서는 글의 응집성을 포착하기 위하여 개연규칙을 활용한다. 개연규칙은 문장 구성성분들의 문장간 개연적 연결상황을 나타내고, 글의 인과 성향이나 담화작용을 반영한다. 글을 이해하기 위한 대표적인 속성에는 글에 긴밀성을 부여하는 응집성이 있다. 글의 응집성을 파악하기 위한 대표적인 언어학적 도구나 지식으로는 어휘사슬을 들 수 있다. 이에 본 논문에서는 주어진 예문의 어휘사슬을 개연규칙으로 찾아낸 개연사슬과 비교해 보았다. 그 결과, 중요도가 높은 어휘사슬과 대응하는 개연사슬을 발견할 수 있었다. 개연사슬은 종래의 어휘사슬의 기능을 포함할 뿐만 아니라, 줄거리 단위, 단서구 용법, 문장사이의 개연성 등을 감지하여 문장간의 의미적 연관성을 포착할 수 있다. 이는 개연규칙을 활용하여 글의 화제문을 효과적으로 선별할 수 있음을 보인다.

  • PDF

음소 모델의 Back-Off 기법을 이용한 어휘독립 음성인식기의 성능개선 (Performance Improvement of Vocabulary Independent Speech Recognizer using Back-Off Method on Subword Model)

  • 구동욱;최준기;오영환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.19-22
    • /
    • 2000
  • 어휘독립 음성인식이란 음향학적 모델 훈련에 사용하지 않은 어휘들을 인식하는 것이다. 단어모델을 이용한 어휘독립 음성인식 시스템은 발음표기로 변환된 인식대상어휘에 대하여 문맥 종속형 부단어(context dependent subword) 단위로 훈련된 모델을 연결하여 단어 모델을 만들고 이 단어 모델로 인식을 수행한다. 이러한 시스템의 경우 훈련과정에서 나타나지 않는 문맥 종속형 부단어가 인식대상어휘에서 나타나게 되고, 따라서 정확한 단어모델을 구성할 수 없다는 문제점이 있다 본 논문에서는 문맥 종속형 부단어 구분의 계층화를 통한 back-off 선택 방법을 이용하여 새롭게 나타난 문맥 종속형 부단어 대신 연결될 부단어 모델을 찾아내는 방법을 제안한다 제안된 선택 방법은 새롭게 나타난 문맥 종속형 부단어를 포함하는 상위의 부단어를 찾아내는 방법이다. 실험 결과 10단어 세트에서 $97.5\%$ 50단어 세트에서$90.16\%$ 100 단어 세트에서 $82.08\%$의 인식률을 얻었다.

  • PDF