• Title/Summary/Keyword: 어절 정보

Search Result 378, Processing Time 0.025 seconds

An Efficient Method on Korean Morphological Analysis (효율적인 한국어 형태소분석 방법)

  • Jung, I.H.;Yang, G.J.;Kim, Y.W.
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.379-384
    • /
    • 1993
  • 본 논문은 효율적인 한국어 형태소분석 방법을 제안한다. 기존의 형태소분석 방법에서는 분석속도와 분석정도가 상호보상 관계에 있으므로 형태소분석기가 이용되는 분야에 따라서 다른 분석방법이 사용되고 있다. 본 논문에서 제안한 형태소 분석 알고리즘은 하나의 어절을 이루는 형태소들 사이의 구성원리를 이용하여 각 어절 타입을 예측하고 각 타입에 적합한 분석을 함으로써 적은 회수의 형태소 분할로도 정확한 형태소분석이 가능하게 한다. 본 알고리즘은 많은 문장으로 형태소 분석실험을 하였고 그 실험 결과는 기존의 방법 보다 우수하여 분석속도와 분석정도에 있어서 범용성이 입증되었다. 본 논문은 효율적인 형태소분석 방법을 제시하고 이를 반영한 형태소분석 시스템의 설계 및 구현에 관하여 기술한다.

  • PDF

An Effective Indexing Method for Hangul Texts (한글 문서를 위한 효과적인 색인 방법)

  • 이준호;박혁로;박현주;안정수;김명호
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1995.08a
    • /
    • pp.11-14
    • /
    • 1995
  • 기존의 한글 자동 색인 방법들은 어절 단위 색인법과 형태소 단위 색인법으로 분류될 수 있다. 전자는 문서내의 어절에서 색인어의 부분으로서 가치가 없는 음절들을 제거함으로써 색인어를 추출하는 방법으로, 문서에 복합 명사들이 많이 포함되어 있을 경우 검색효과가 저하되는 문제점을 지니고 있다. 후자는 형태소 해석이나 구문 해석을 이용하여 중요한 의미를 갖는 명사나 명사구를 추출하는 방법으로, 단일 명사를 추출함으로써 복합 명사의 띄어 쓰기 문제를 극복할 수 있다. 그러나, 색인 과정에서 요구되는 많은 언어 정보를 개발하고 유지 보수해야 하는 부담을 지니고 있다. 본 논문에서는 기존의 색인 방법들의 문제점들을 완화할 수 있는 새로운 색인 방법을 제안한다. 그리고 실험을 통하여 제안하는 방법의 성능을 평가한다.

  • PDF

BERT with subword units for Korean Morphological Analysis (BERT에 기반한 Subword 단위 한국어 형태소 분석)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.37-40
    • /
    • 2019
  • 한국어 형태소 분석은 입력된 문장 내의 어절들을 지니는 최소의 단위인 형태소로 분리하고 품사 부착하는 작업을 의미한다. 기존 한국어 형태소 분석 방법은 음절 기반 연구가 주를 이루고 이를 순차 태깅 문제로 보고 SVM, CRF혹은 Bi-LSTM-CRF 등을 이용하거나 특정 음절에서 형태소의 경계를 결정하는 전이 기반 모델을 통해 분석하는 모델 등이 연구되었다. 최근 자연어 처리 연구에서 대용량 코퍼스로부터 문맥을 고려한 BERT 등의 언어 모델을 활용한 연구가 각광받고 있다. 본 논문에서는 음절 단위가 아닌 BERT를 이용한 Sub-word 기반 형태소 분석 방법을 제안하고 기분석 사전을 통해 분석하는 과정을 거쳐 세종 한국어 형태소 분석 데이터 셋에서 형태소 단위 F1 : 95.22%, 어절 정확도 : 93.90%의 성능을 얻었다.

  • PDF

Korean Part-of-Speech Tagging using Automatically Acquired Lexical Information (어휘 정보의 자동 추출과 이를 이용한 한국어 품사 태깅)

  • Kang, In-Ho;Kim, Do-Wan;Lee, Sin-Mok;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.117-122
    • /
    • 1999
  • 본 연구는 형태소 분석에 필요한 언어 지식과 품사 태깅에 필요한 확률 정보를 별도의 언어 지식 추가 없이 학습 말뭉치를 통해서 얻어내는 방법을 제안한다. 먼저 품사 부착된 학습 말뭉치로부터 형태소 사전과 결합 정보를 추출한다. 그리고 자주 발생하는 어절 및 해석상 모호성이 많은 어절에 대해서는 학습 말뭉치에서 발견된 형태소 분석 결과를 저장하여 형태소 분석에 소요되는 시간과 형태소 분석의 정확률을 높인다. 또한 미등록어의 많은 부분을 차지하는 인명, 지명, 조직명에 대해서는 정보 추출 분야에서 사용하는 고유 명사 분류법으로 해결한다. 품사 태깅을 위해서는 품사열 정보와 품사열 정보로는 해결할 수 없는 경우를 위한 어휘 정보를 학습 말뭉치에서 추출한다. 품사열 정보와 어휘 정보는 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용되어 품사 태깅 시스템을 위한 확률 분포를 구성한다. 본 연구에서 제안하는 방법은 학습 말뭉치를 기반으로 한다는 특성에 의해 다양한 영역에 사용하기 쉽다. 또한 어휘 정보로 품사 문맥 정보를 보완하기 때문에 품사 분류 체계와 형태소 해석 규칙에 영향을 적게 받는다는 장점을 가진다. MATEC '99 데이터 실험 결과 형태소 단위로 94%의 재현률과 93%의 정확률을 얻을 수 있었다.

  • PDF

Attention-based Unsupervised Style Transfer by Noising Input Sentences (입력 문장 Noising과 Attention 기반 비교사 한국어 문체 변환)

  • Noh, Hyungjong;Lee, Yeonsoo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.434-439
    • /
    • 2018
  • 문체 변환 시스템을 학습하는 데 있어서 가장 큰 어려움 중 하나는 병렬 말뭉치가 부족하다는 것이다. 최근 대량의 비병렬 말뭉치만으로 문체 변환 문제를 해결하려는 많은 연구들이 발표되었지만, 아직까지도 원 문장의 정보 보존(Content preservation)과 문체 변환(Style transfer) 모두를 이루는 것이 쉽지 않은 상태이다. 특히 비교사 학습의 특성상 문체 변환과 동시에 정보를 보존하는 것이 매우 어렵다. Attention 기반의 Seq2seq 네트워크를 이용할 경우에는 과도하게 원문의 정보가 보존되어 문체 변환 능력이 떨어지기도 한다. 그리고 OOV(Out-Of-Vocabulary) 문제 또한 존재한다. 본 논문에서는 Attention 기반의 Seq2seq 네트워크를 이용하여 어절 단위의 정보 보존력을 최대한 높이면서도, 입력 문장에 효과적으로 Noise를 넣어 문체 변환 성능을 저해하는 과도한 정보 보존 현상을 막고 문체의 특성을 나타내는 어절들이 잘 변환되도록 할 뿐 아니라 OOV 문제도 줄일 수 있는 방법을 제안한다. 우리는 비교 실험을 통해 본 논문에서 제안한 방법들이 한국어 문장뿐 아니라 영어 문장에 대해서도 state-of-the-art 시스템들에 비해 향상된 성능을 보여준다는 사실을 확인하였다.

  • PDF

Developing an Error Correction Tool for Sejong POS Tagged Corpus (세종 형태분석 말뭉치의 오류 수정 도구 개발)

  • Choi, Myung-Gil;Nam, Yoo-Rim;Seo, Hyung-Won;Jeon, Kil-Ho;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.114-116
    • /
    • 2011
  • 한국어 정보처리에서 널리 사용되는 세종 형태분석 말뭉치는 품사정보와 문장정보 등 다양한 한국어 정보를 포함하고 있다. 이 말뭉치는 방대한 양의 정보들로 구축되었지만 많은 오류 또한 포함되어 있다. 예를 들면 철자 오류, 띄어쓰기 오류, 그리고 품사부착 오류 등이 있다. 하지만 세종말뭉치와 같이 대용량 말뭉치의 오류를 수정하는 것은 많은 인력과 시간이 필요하며 일관성 있게 오류를 수정하는 것은 쉽지 않다. 따라서 본 논문에서는 세종 형태분석 말뭉치에 포함된 오류를 빠르고 일관성 있게 수정하기 위한 오류 수정 도구를 구현하였다. 본 논문에서 수정 대상이 되는 오류는 어절과 형태소 분석 결과의 불일치에 관한 오류만 대상으로 한다. 이를 위해 세종 형태분석 말뭉치를 데이터베이스로 재구축하였으며, 본래의 어절과 품사가 부착된 형태소의 자모를 각각 분리하여 두 자모의 차이점을 분석하여 오류 후보를 선정한다. 오류 후보에서 동일한 오류 패턴을 갖는 모든 오류 후보에 대하여 동일한 방법으로 일관성 있고 빠르게 수정할 수 있다.

  • PDF

A Parser of Definitions in Korean Dictionary based on Probabilistic Grammar Rules (확률적 문법규칙에 기반한 국어사전의 뜻풀이말 구문분석기)

  • Lee, Su-Gwang;Ok, Cheol-Yeong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.48-460
    • /
    • 2001
  • 국어사전의 뜻풀이말은 표제어의 의미를 기술할 뿐만 아니라, 상위/하위개념, 부분-전체개념, 다의어, 동형이의어, 동의어, 반의어, 의미속성 등의 많은 의미정보를 내재하고 있다. 본 연구는 뜻풀이말에서 다양한 의미정보를 획득을 위한 기본적인 도구로서 국어사전의 뜻풀이말 구문분석기를 구현하는 것을 목적으로 한다. 이를 위해서 우선 국어사전의 뜻풀이말을 대상으로 일정한 수준의 품사 및 구문 부착 말 뭉치를 구축하고, 이 말뭉치들로부터 품사 태그 중의성 어절의 빈도 정보와 통계적 방법에 기반한 문법규칙과 확률정보를 자동으로 추출한다. 본 연구의 뜻풀이말 구문분석기는 이를 이용한 확률적 차트파서이다. 품사 태그 중의성 어절의 빈도 정보와 문법규칙 및 확률정보는 파싱 과정의 명사구 중의성을 해소한다. 또한, 파싱 과정에서 생성되는 노드의 수를 줄이고 수행 속도를 높이기 위한 방법으로 문법 Factoring, Best-First 탐색 그리고 Viterbi 탐색의 방법을 이용한다. 문법규칙의 확률과 왼쪽 우선 파싱 그리고 왼쪽 우선 탐색 방법을 사용하여 실험한 결과, 왼쪽 우선 탐색 방식과 문법확률을 혼용하는 방식이 가장 정확한 결과를 보였으며 비학습 문장에 대해 51.74%의 재현률과 87.47%의 정확률을 보였다.

  • PDF

Recognizing Unknown Words and Correcting Spelling errors as Preprocessing for Korean Information Processing System (한국어 정보처리 시스템의 전처리를 위한 미등록어 추정 및 철자 오류의 자동 교정)

  • Park, Bong-Rae;Rim, Hae-Chang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2591-2599
    • /
    • 1998
  • In this paper, we proose a method of recognizing unknown words and correcting spelling errors(including spacing erors) to increase the performance of Korean information processing systems. Unknown words are recognized through comparative analysis of two or more morphologically similar eojeols(spacing units in Korean) including the same unknown word candidates. And spacing errors and spelling errors are corrected by using lexicatlized rules shich are automatically extracted from very large raw corpus. The extractionof the lexicalized rules is based on morphological and contextual similarities between error eojeols and their corection eojeols which are confirmed to be used in the corpus. The experimental result shows that our system can recognize unknown words in an accuracy of 98.9%, and can correct spacing errors and spelling errors in accuracies of 98.1% and 97.1%, respectively.

  • PDF

Characteristics of Resolving Syntatic Ambiguity in Normals and Aphasic (한국어 구문 중의성 해결과정 : 정상인과 명칭성 실어증 환자의 구문정보처리 특성)

  • Kim, Yoon-Jung;Kim, Su-Jung;Jung, Jae-Bum;Nam, Ki-Chun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.470-475
    • /
    • 1999
  • 문장을 이해하기 위해서는 각 단어를 이해한 후에 이 단어들이 문장 내에서 어떠한 기능을 담당하고 있는지 그 구조를 파악해야 한다. 한국어 정보 처리에 있어서 명칭성 실어증 환자는 어떠한 방식으로 이러한 문장 구조를 파악하는지 정상인과의 비교를 통해 그 특성을 살펴보고자 하는 데 본 연구의 목적이 있다. 실험 재료로는 구문 중의성 문장을 사용하였는데, 구문 중의성이란 가령 '정치가'와 같은 어절이 '정치+가(주격조사)'나, '정치+가(접미사)' 모두를 뜻할 수 있음을 말한다. 본 연구에서는 이러한 중의성을 이해하는 과정을 알아보기 위해 중의성 해결 지역에서의 읽기 시간(reading time)을 측정하였으며, 실험 과제는 자기 조절 읽기 과제(self-paced reading task)를 사용하였다. 그 결과 정상인 피험자와 마찬가지로 '정치가'와 같은 중의적 어절이 주어로 쓰였을 때에는 중의적 문장 / 비중의적 문장간의 차이가 없었으나 '명사+접사'로 해석해야 할 경우에는 둘 간의 차이가 크게 나타나 피험자였던 명칭성 실어증 환자의 경우 이러한 중의성을 해결하면서 읽는 데에는 손상이 없는 것으로 보였다. 단 전체적인 문장을 읽는데에는 시간이 오래 걸려 역시 문장을 읽고 이해하는 데에는 어려움을 겪는 것으로 나타났다. 따라서, 명칭성 실어증 환자는 문장 산출의 어려움이 구문적 정보처리에서의 문제라기보다는 어휘 정보를 적절하게 인출하지 못하기 때문에 나타나는 것으로 추론된다.

  • PDF

Context Based Real-time Korean Writing Correcting for Foriengers (외국인 학습자를 위한 문맥 기반 실시간 국어 문장 교정)

  • Park, Young-Keun;Choi, Jae-Sung;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun-Ah
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.273-275
    • /
    • 2016
  • 외국인 유학생과 국내 체류 외국인을 포함하여 한국어를 학습하고자 하는 외국인이 지속적으로 증가함에 따라, 외국인 한국어 학습자의 교육에 대한 관심도 높아지고 있다. 기존 맞춤법 검사기는 한국어를 충분히 이해할 수 있는 한국인의 사용에 중점을 두고 있어, 외국인 한국어 학습자가 사용하기에는 다소 부적절하다. 본 논문에서는 한국어의 문맥 특성과 외국인의 작문 특성을 반영한 한국어 교정 방식을 제안한다. 제안하는 시스템에서는 말뭉치에서 추출한 어절 바이그램에 대한 음절 역색인을 구성하여 추천 표현을 빠르게 제시할 수 있으며, 키보드 후킹에 기반한 사용자인터페이스를 제공하여 사용자 편의를 높인다.

  • PDF