Annual Conference on Human and Language Technology
/
1993.10a
/
pp.379-384
/
1993
본 논문은 효율적인 한국어 형태소분석 방법을 제안한다. 기존의 형태소분석 방법에서는 분석속도와 분석정도가 상호보상 관계에 있으므로 형태소분석기가 이용되는 분야에 따라서 다른 분석방법이 사용되고 있다. 본 논문에서 제안한 형태소 분석 알고리즘은 하나의 어절을 이루는 형태소들 사이의 구성원리를 이용하여 각 어절 타입을 예측하고 각 타입에 적합한 분석을 함으로써 적은 회수의 형태소 분할로도 정확한 형태소분석이 가능하게 한다. 본 알고리즘은 많은 문장으로 형태소 분석실험을 하였고 그 실험 결과는 기존의 방법 보다 우수하여 분석속도와 분석정도에 있어서 범용성이 입증되었다. 본 논문은 효율적인 형태소분석 방법을 제시하고 이를 반영한 형태소분석 시스템의 설계 및 구현에 관하여 기술한다.
Proceedings of the Korean Society for Information Management Conference
/
1995.08a
/
pp.11-14
/
1995
기존의 한글 자동 색인 방법들은 어절 단위 색인법과 형태소 단위 색인법으로 분류될 수 있다. 전자는 문서내의 어절에서 색인어의 부분으로서 가치가 없는 음절들을 제거함으로써 색인어를 추출하는 방법으로, 문서에 복합 명사들이 많이 포함되어 있을 경우 검색효과가 저하되는 문제점을 지니고 있다. 후자는 형태소 해석이나 구문 해석을 이용하여 중요한 의미를 갖는 명사나 명사구를 추출하는 방법으로, 단일 명사를 추출함으로써 복합 명사의 띄어 쓰기 문제를 극복할 수 있다. 그러나, 색인 과정에서 요구되는 많은 언어 정보를 개발하고 유지 보수해야 하는 부담을 지니고 있다. 본 논문에서는 기존의 색인 방법들의 문제점들을 완화할 수 있는 새로운 색인 방법을 제안한다. 그리고 실험을 통하여 제안하는 방법의 성능을 평가한다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.37-40
/
2019
한국어 형태소 분석은 입력된 문장 내의 어절들을 지니는 최소의 단위인 형태소로 분리하고 품사 부착하는 작업을 의미한다. 기존 한국어 형태소 분석 방법은 음절 기반 연구가 주를 이루고 이를 순차 태깅 문제로 보고 SVM, CRF혹은 Bi-LSTM-CRF 등을 이용하거나 특정 음절에서 형태소의 경계를 결정하는 전이 기반 모델을 통해 분석하는 모델 등이 연구되었다. 최근 자연어 처리 연구에서 대용량 코퍼스로부터 문맥을 고려한 BERT 등의 언어 모델을 활용한 연구가 각광받고 있다. 본 논문에서는 음절 단위가 아닌 BERT를 이용한 Sub-word 기반 형태소 분석 방법을 제안하고 기분석 사전을 통해 분석하는 과정을 거쳐 세종 한국어 형태소 분석 데이터 셋에서 형태소 단위 F1 : 95.22%, 어절 정확도 : 93.90%의 성능을 얻었다.
Annual Conference on Human and Language Technology
/
1999.10d
/
pp.117-122
/
1999
본 연구는 형태소 분석에 필요한 언어 지식과 품사 태깅에 필요한 확률 정보를 별도의 언어 지식 추가 없이 학습 말뭉치를 통해서 얻어내는 방법을 제안한다. 먼저 품사 부착된 학습 말뭉치로부터 형태소 사전과 결합 정보를 추출한다. 그리고 자주 발생하는 어절 및 해석상 모호성이 많은 어절에 대해서는 학습 말뭉치에서 발견된 형태소 분석 결과를 저장하여 형태소 분석에 소요되는 시간과 형태소 분석의 정확률을 높인다. 또한 미등록어의 많은 부분을 차지하는 인명, 지명, 조직명에 대해서는 정보 추출 분야에서 사용하는 고유 명사 분류법으로 해결한다. 품사 태깅을 위해서는 품사열 정보와 품사열 정보로는 해결할 수 없는 경우를 위한 어휘 정보를 학습 말뭉치에서 추출한다. 품사열 정보와 어휘 정보는 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용되어 품사 태깅 시스템을 위한 확률 분포를 구성한다. 본 연구에서 제안하는 방법은 학습 말뭉치를 기반으로 한다는 특성에 의해 다양한 영역에 사용하기 쉽다. 또한 어휘 정보로 품사 문맥 정보를 보완하기 때문에 품사 분류 체계와 형태소 해석 규칙에 영향을 적게 받는다는 장점을 가진다. MATEC '99 데이터 실험 결과 형태소 단위로 94%의 재현률과 93%의 정확률을 얻을 수 있었다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.434-439
/
2018
문체 변환 시스템을 학습하는 데 있어서 가장 큰 어려움 중 하나는 병렬 말뭉치가 부족하다는 것이다. 최근 대량의 비병렬 말뭉치만으로 문체 변환 문제를 해결하려는 많은 연구들이 발표되었지만, 아직까지도 원 문장의 정보 보존(Content preservation)과 문체 변환(Style transfer) 모두를 이루는 것이 쉽지 않은 상태이다. 특히 비교사 학습의 특성상 문체 변환과 동시에 정보를 보존하는 것이 매우 어렵다. Attention 기반의 Seq2seq 네트워크를 이용할 경우에는 과도하게 원문의 정보가 보존되어 문체 변환 능력이 떨어지기도 한다. 그리고 OOV(Out-Of-Vocabulary) 문제 또한 존재한다. 본 논문에서는 Attention 기반의 Seq2seq 네트워크를 이용하여 어절 단위의 정보 보존력을 최대한 높이면서도, 입력 문장에 효과적으로 Noise를 넣어 문체 변환 성능을 저해하는 과도한 정보 보존 현상을 막고 문체의 특성을 나타내는 어절들이 잘 변환되도록 할 뿐 아니라 OOV 문제도 줄일 수 있는 방법을 제안한다. 우리는 비교 실험을 통해 본 논문에서 제안한 방법들이 한국어 문장뿐 아니라 영어 문장에 대해서도 state-of-the-art 시스템들에 비해 향상된 성능을 보여준다는 사실을 확인하였다.
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.114-116
/
2011
한국어 정보처리에서 널리 사용되는 세종 형태분석 말뭉치는 품사정보와 문장정보 등 다양한 한국어 정보를 포함하고 있다. 이 말뭉치는 방대한 양의 정보들로 구축되었지만 많은 오류 또한 포함되어 있다. 예를 들면 철자 오류, 띄어쓰기 오류, 그리고 품사부착 오류 등이 있다. 하지만 세종말뭉치와 같이 대용량 말뭉치의 오류를 수정하는 것은 많은 인력과 시간이 필요하며 일관성 있게 오류를 수정하는 것은 쉽지 않다. 따라서 본 논문에서는 세종 형태분석 말뭉치에 포함된 오류를 빠르고 일관성 있게 수정하기 위한 오류 수정 도구를 구현하였다. 본 논문에서 수정 대상이 되는 오류는 어절과 형태소 분석 결과의 불일치에 관한 오류만 대상으로 한다. 이를 위해 세종 형태분석 말뭉치를 데이터베이스로 재구축하였으며, 본래의 어절과 품사가 부착된 형태소의 자모를 각각 분리하여 두 자모의 차이점을 분석하여 오류 후보를 선정한다. 오류 후보에서 동일한 오류 패턴을 갖는 모든 오류 후보에 대하여 동일한 방법으로 일관성 있고 빠르게 수정할 수 있다.
국어사전의 뜻풀이말은 표제어의 의미를 기술할 뿐만 아니라, 상위/하위개념, 부분-전체개념, 다의어, 동형이의어, 동의어, 반의어, 의미속성 등의 많은 의미정보를 내재하고 있다. 본 연구는 뜻풀이말에서 다양한 의미정보를 획득을 위한 기본적인 도구로서 국어사전의 뜻풀이말 구문분석기를 구현하는 것을 목적으로 한다. 이를 위해서 우선 국어사전의 뜻풀이말을 대상으로 일정한 수준의 품사 및 구문 부착 말 뭉치를 구축하고, 이 말뭉치들로부터 품사 태그 중의성 어절의 빈도 정보와 통계적 방법에 기반한 문법규칙과 확률정보를 자동으로 추출한다. 본 연구의 뜻풀이말 구문분석기는 이를 이용한 확률적 차트파서이다. 품사 태그 중의성 어절의 빈도 정보와 문법규칙 및 확률정보는 파싱 과정의 명사구 중의성을 해소한다. 또한, 파싱 과정에서 생성되는 노드의 수를 줄이고 수행 속도를 높이기 위한 방법으로 문법 Factoring, Best-First 탐색 그리고 Viterbi 탐색의 방법을 이용한다. 문법규칙의 확률과 왼쪽 우선 파싱 그리고 왼쪽 우선 탐색 방법을 사용하여 실험한 결과, 왼쪽 우선 탐색 방식과 문법확률을 혼용하는 방식이 가장 정확한 결과를 보였으며 비학습 문장에 대해 51.74%의 재현률과 87.47%의 정확률을 보였다.
The Transactions of the Korea Information Processing Society
/
v.5
no.10
/
pp.2591-2599
/
1998
In this paper, we proose a method of recognizing unknown words and correcting spelling errors(including spacing erors) to increase the performance of Korean information processing systems. Unknown words are recognized through comparative analysis of two or more morphologically similar eojeols(spacing units in Korean) including the same unknown word candidates. And spacing errors and spelling errors are corrected by using lexicatlized rules shich are automatically extracted from very large raw corpus. The extractionof the lexicalized rules is based on morphological and contextual similarities between error eojeols and their corection eojeols which are confirmed to be used in the corpus. The experimental result shows that our system can recognize unknown words in an accuracy of 98.9%, and can correct spacing errors and spelling errors in accuracies of 98.1% and 97.1%, respectively.
Kim, Yoon-Jung;Kim, Su-Jung;Jung, Jae-Bum;Nam, Ki-Chun
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.470-475
/
1999
문장을 이해하기 위해서는 각 단어를 이해한 후에 이 단어들이 문장 내에서 어떠한 기능을 담당하고 있는지 그 구조를 파악해야 한다. 한국어 정보 처리에 있어서 명칭성 실어증 환자는 어떠한 방식으로 이러한 문장 구조를 파악하는지 정상인과의 비교를 통해 그 특성을 살펴보고자 하는 데 본 연구의 목적이 있다. 실험 재료로는 구문 중의성 문장을 사용하였는데, 구문 중의성이란 가령 '정치가'와 같은 어절이 '정치+가(주격조사)'나, '정치+가(접미사)' 모두를 뜻할 수 있음을 말한다. 본 연구에서는 이러한 중의성을 이해하는 과정을 알아보기 위해 중의성 해결 지역에서의 읽기 시간(reading time)을 측정하였으며, 실험 과제는 자기 조절 읽기 과제(self-paced reading task)를 사용하였다. 그 결과 정상인 피험자와 마찬가지로 '정치가'와 같은 중의적 어절이 주어로 쓰였을 때에는 중의적 문장 / 비중의적 문장간의 차이가 없었으나 '명사+접사'로 해석해야 할 경우에는 둘 간의 차이가 크게 나타나 피험자였던 명칭성 실어증 환자의 경우 이러한 중의성을 해결하면서 읽는 데에는 손상이 없는 것으로 보였다. 단 전체적인 문장을 읽는데에는 시간이 오래 걸려 역시 문장을 읽고 이해하는 데에는 어려움을 겪는 것으로 나타났다. 따라서, 명칭성 실어증 환자는 문장 산출의 어려움이 구문적 정보처리에서의 문제라기보다는 어휘 정보를 적절하게 인출하지 못하기 때문에 나타나는 것으로 추론된다.
Park, Young-Keun;Choi, Jae-Sung;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun-Ah
한국어정보학회:학술대회논문집
/
2016.10a
/
pp.273-275
/
2016
외국인 유학생과 국내 체류 외국인을 포함하여 한국어를 학습하고자 하는 외국인이 지속적으로 증가함에 따라, 외국인 한국어 학습자의 교육에 대한 관심도 높아지고 있다. 기존 맞춤법 검사기는 한국어를 충분히 이해할 수 있는 한국인의 사용에 중점을 두고 있어, 외국인 한국어 학습자가 사용하기에는 다소 부적절하다. 본 논문에서는 한국어의 문맥 특성과 외국인의 작문 특성을 반영한 한국어 교정 방식을 제안한다. 제안하는 시스템에서는 말뭉치에서 추출한 어절 바이그램에 대한 음절 역색인을 구성하여 추천 표현을 빠르게 제시할 수 있으며, 키보드 후킹에 기반한 사용자인터페이스를 제공하여 사용자 편의를 높인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.