• Title/Summary/Keyword: 어절 정보

Search Result 378, Processing Time 0.032 seconds

Morphological Analyzer using Longest Match Method for Syntactic Analysis (최장일치를 이용한 구문 분석용 형태소 분석기)

  • Song, Y.J.;Lee, K.Y.;Lee, Y.S.
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.157-166
    • /
    • 1999
  • 형태소 분석 단계는 자연어 처리 과정의 첫 번째 단계로써 주어진 입력 어절들에 대한 형태소들의 조합을 추출하는 일을 한다. 형태소 분석 시스템의 기본적인 기능은 매우 중요하여 적용되는 형태소 분석 알고리즘에 따라 형태소 분석 시스템의 성능에 영향을 미친다. 그러나 형태소 분석 시스템, 구문 분석 시스템 및 의미 분석 시스템이 연계되어 하나의 자연어 처리 시스템이 구축되는 관점에서는 구문분석 시스템의 부담을 줄여 전체 시스템의 효율을 향상시키기 위하여 구문 분석 시스템의 입력에 적합한 형태소 분석 결과를 생성해주는 일 또한 형태소 분석 시스템의 중요한 역할이라 할 수 있다. 본 시스템은 최장일치법을 이용한 형태소 분석 방법으로 입력 어절에 대한 형태소 분석을 수행하는 동안 분석 후보의 개수를 줄이고 사전 탐색 시간을 줄여준다. 또한 구문분석 시스템의 입력에 적절한 형태소 분석 결과를 생성하여 전체 응용 시스템의 효율성을 향상시킨다.

  • PDF

Effective Korean POS Tagging for Typing Errors Using the Concatenation of Jamo and Syllable Embedding (자모 및 음절 임베딩 결합을 이용한 오타에 효과적인 한국어 형태소 분석)

  • Kim, Hyemin;Yang, Seon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.574-579
    • /
    • 2018
  • 본 논문에서는 한국어 형태소 분석 시스템을 제안하는데, 연구 목표는 오타 없는 문서를 대상으로 한 경우에도 높은 성능을 유지하면서, 동시에 오타가 있는 문서에서도 우수한 성능을 산출하는 것이다. 실험은 크게 두 종류로 나누어서 진행된다. 주 실험인 첫 번째 실험에서는, 자모 임베딩과 음절 임베딩을 결합(concatenate)한 벡터를 입력으로 Bidirectional LSTM CRFs을 수행함으로써, 세종말뭉치 대상으로 어절 정확도 97%, 그리고 1, 2, 5 어절마다 오타가 출현한 경우에서도 각각 80.09%, 87.53%, 92.49%의 높은 성능을 산출하였다. 추가 실험인 두 번째 실험에서는, 실생활에서 자주 발생하는 오타들을 집계하여 그 중에서 11가지 오타 유형을 선정 후, 각 유형에 대해 변환된 임베딩 벡터를 적용함으로써, 해당 오타를 포함한 문장에서 93.05%의 우수한 성능을 산출하였다.

  • PDF

Bi-LSTM-CRF and Syllable Embedding for Automatic Spacing of Korean Sentences (음절 임베딩과 양방향 LSTM-CRF를 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.605-607
    • /
    • 2018
  • 본 논문에서는 음절 임베딩과 양방향 LSTM-CRF 모델을 이용한 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 문장에 대한 자질 벡터 표현을 위해 문장을 구성하는 음절을 Unigram 및 Bigram으로 나누어 각 음절을 연속적인 벡터 공간에 표현하고, 양방향 LSTM을 이용하여 현재 자질에 양방향 자질들과 의존성을 부여한 새로운 자질 벡터를 생성한다. 이 새로운 자질 벡터는 전방향 신경망과 선형체인(Linear-Chain) CRF를 이용하여 최적의 띄어쓰기 태그 열을 예측하고, 생성된 띄어쓰기 태그를 기반으로 문장 자동 띄어쓰기를 수행하였다. 문장 13,500개와 277,718개 어절로 이루어진 학습 데이터 집합과 문장 1,500개와 31,107개 어절로 이루어진 테스트 집합의 학습 및 평가 결과는 97.337%의 음절 띄어쓰기 태그 분류 정확도를 보였다.

  • PDF

Automatic Extraction using Morpheme Network for Korean Texts (형태소 네트웍을 이용한 한글 문헌의 자동 키워드 추출)

  • Kim, Chul-Wan;Chang, Jaw-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.363-368
    • /
    • 1994
  • 본 논문은 한글 문헌의 자동 키워드 추출을 위한 새로운 접근 기법을 제시한다. 한글에서 나타나는 형식형태소는 어절내에서 일정한 결합규칙을 가지며 또한 명사구나 동사구에서 보여지는 것처럼 어절간의 연결에도 관계된다. 유한개의 형식형태소를 노드로 하여 구성된 형태소 네트???p은 어휘사전 및 문헌을 통해 링크를 생성하게 되며 형태소분석과정에서 이를 이용하면 명사 추출의 정확성을 높일 수 있고 사전 탐색을 최소화하여 미등록어 추정 및 분석 속도를 향상시킬 수 있다.

  • PDF

A Correcting method of Speller for Hangul (한글 철자 오류 교정 시스템)

  • Chae, Young-Soog;Lee, Young-Sik;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1992.10a
    • /
    • pp.459-468
    • /
    • 1992
  • 문서 속에서 나타나는 철자 오류는 맞춤법을 몰라서 잘못 쓴 경우와 자료 입력 과정에서 잘못 입력된 경우로 볼 수 있다. 이들 각각의 오류들에 대해 맞춤법 및 표준어 규칙을 비롯하여 한국어 자료의 통계적 분석을 통한 교정 기법을 제공하고자 한다. 본 논문은 철자 검사기가 틀리다고 판단한 오류 어절로부터 올바른 어절을 찾아서 교정해 주고 철자가 틀린 원인을 알려줄 수 있는 도움말 기능을 제공하는 철자 교정 시스템을 구현하고자 한다.

  • PDF

Design and implementation of an efficient part-of-speech annotation tool that has the study facility (학습기능을 가진 효율적인 품사 부착 도구 설계 및 구현)

  • Ahn, Yu-Mi;Oh, Jin-Young;Cha, Jung-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.191-196
    • /
    • 2009
  • 본 논문에서는 자바 기반의 품사부착 코퍼스 작성 도구를 제안 및 구현한다. 본 시스템에서는 각 사용자가 독립적으로 실행하지만 주요 데이터베이스는 서버에서 관리함으로서 지식을 공유할 수 있고, 품사부착 작업에 있어 사전에 만들어진 어절 후보로부터의 선택 및 사용자 입력이 가능하도록 한다. 고빈도 오류어절의 자동 표시 기능, 용례 검색을 통한 도움말 기능, 코멘트를 기반으로 구성된 집단 지식을 이용한 도움말 확장 기능 및 사전 검색 기능을 구현한다. 또한, 일관성 검사를 통해 품사부착 결과에 대한 신뢰도 증가 및 작업의 편의성을 증대시킬 수 있도록 설계한다.

  • PDF

A recognition algorithm of Korean verb and noun idiomatic phrases (한국어 동사와 명사 관용구 인식 알고리즘)

  • Lee, Ho Suk
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.170-175
    • /
    • 2009
  • 본 논문은 한국어 관용구 인식 알고리즘에 대하여 논의한다. 다음(daum) 전자 사전에는 관용구의 의미를, "두 개 이상의 단어로 이루어져 있으면서, 그 단어들의 의미만으로는 전체 의미를 알 수 없는, 특수한 의미를 나타내는 어구" 라고 설명되어 있다. 한국어 관용구의 길이는 2글자 ~ 4글자인 경우가 많으며 그 이상인 경우도 있다. 대부분의 관용구는 일반 사전에 동사와 명사를 기준으로 분류되어 있으며, 품사 표시나 구절 표시 없이 어절의 문자열 형태로만 표현되어 나타난다. 본 논문에서는 전자 사전에 품사 표시나 구절 표시 없이 어절 문자열 형태로 저장되어 있는 한국어 관용구를 입력 문장에서 인식하는 관용구 인식 알고리즘에 대하여 논의한다. 그리고 연어 인식과 명사의 의미 속성 처리에 대하여서도 논의한다.

  • PDF

Korean phrase structure parsing using sequence-to-sequence learning (Sequence-to-sequence 모델을 이용한 한국어 구구조 구문 분석)

  • Hwang, Hyunsun;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.20-24
    • /
    • 2016
  • Sequence-to-sequence 모델은 입력열을 길이가 다른 출력열로 변환하는 모델로, 단일 신경망 구조만을 사용하는 End-to-end 방식의 모델이다. 본 논문에서는 Sequence-to-sequence 모델을 한국어 구구조 구문 분석에 적용한다. 이를 위해 구구조 구문 트리를 괄호와 구문 태그 및 어절로 이루어진 출력열의 형태로 만들고 어절들을 단일 기호 'XX'로 치환하여 출력 단어 사전의 수를 줄였다. 그리고 최근 기계번역의 성능을 높이기 위해 연구된 Attention mechanism과 Input-feeding을 적용하였다. 실험 결과, 세종말뭉치의 구구조 구문 분석 데이터에 대해 기존의 연구보다 높은 F1 89.03%의 성능을 보였다.

  • PDF

A Study on the Sentiment analysis of Google Play Store App Comment Based on WPM(Word Piece Model) (WPM(Word Piece Model)을 활용한 구글 플레이스토어 앱의 댓글 감정 분석 연구)

  • Park, jae Hoon;Koo, Myong-wan
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.291-295
    • /
    • 2016
  • 본 논문에서는 한국어 기본 유니트 단위로 WPM을 활용한 구글 플레이 스토어 앱의 댓글 감정분석을 수행하였다. 먼저 자동 띄어쓰기 시스템을 적용한 후, 어절단위, 형태소 분석기, WPM을 각각 적용하여 모델을 생성하고, 로지스틱 회귀(Logistic Regression), 소프트맥스 회귀(Softmax Regression), 서포트 벡터머신(Support Vector Machine, SVM)등의 알고리즘을 이용하여 댓글 감정(긍정과 부정)을 비교 분석하였다. 그 결과 어절단위, 형태소 분석기보다 WPM이 최대 25%의 향상된 결과를 얻었다. 또한 분류 과정에서 로지스틱회귀, 소프트맥스 회귀보다는 SVM 성능이 우수했으며, SVM의 기본 파라미터({'kernel':('linear'), 'c':[4]})보다 최적의 파라미터를 적용({'kernel': ('linear','rbf', 'sigmoid', 'poly'), 'C':[0.01, 0.1, 1.4.5]} 하였을 때, 최대 91%의 성능이 나타났다.

  • PDF

Korean Semantic Role Labeling using Input-feeding RNN Search Model with CopyNet (Input-feeding RNN Search 모델과 CopyNet을 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.300-304
    • /
    • 2016
  • 본 논문에서는 한국어 의미역 결정을 순차열 분류 문제(Sequence Labeling Problem)가 아닌 순차열 변환 문제(Sequence-to-Sequence Learning)로 접근하였고, 구문 분석 단계와 자질 설계가 필요 없는 End-to-end 방식으로 연구를 진행하였다. 음절 단위의 RNN Search 모델을 사용하여 음절 단위로 입력된 문장을 의미역이 달린 어절들로 변환하였다. 또한 순차열 변환 문제의 성능을 높이기 위해 연구된 인풋-피딩(Input-feeding) 기술과 카피넷(CopyNet) 기술을 한국어 의미역 결정에 적용하였다. 실험 결과, Korean PropBank 데이터에서 79.42%의 레이블 단위 f1-score, 71.58%의 어절 단위 f1-score를 보였다.

  • PDF