In this thesis. we present a new method for inducing a probabilistic dependency grammar (PDG) from text corpus. As words in Korean are composed of a set of more basic morphemes, there exist various dependency relations in a word. So, if the induction process does not take into account of these in-word dependency relations, the accuracy of the resulting grammar nay be poor. In comparison with previous PDG induction methods. the main difference of the proposed method lies in the fact that the method takes into account in-word dependency relations as well as inter-word dependency relations. To access the performance of the proposed method, we conducted an experiment using a manually-tagged corpus of 25,000 sentences which is complied by Korean Advanced Institute of Science and Technology (KAIST). The grammar induction produced 2,349 dependency rules. The parser with these dependency rules shoved 69.77% accuracy in terms of the number of correct dependency relations relative to the total number dependency relations for best-1 parse trees of sample sentences. The result shows that taking into account in-word dependency relations in the course of grammar induction results in a more accurate dependency grammar.
Many sentiment categorization systems based on machine learning methods use morphological analyzers in order to extract linguistic features from sentences. However, the morphological analyzers do not generally perform well in a customer review domain because online customer reviews include many spacing errors and spelling errors. These low performances of the underlying systems lead to performance decreases of the sentiment categorization systems. To resolve this problem, we propose a feature extraction method based on simple longest matching of Eojeol (a Korean spacing unit) and phoneme patterns. The two kinds of patterns are automatically constructed from a large amount of POS (part-of-speech) tagged corpus. Eojeol patterns consist of Eojeols including content words such as nouns and verbs. Phoneme patterns consist of leading consonant and vowel pairs of predicate words such as verbs and adjectives because spelling errors seldom occur in leading consonants and vowels. To evaluate the proposed method, we implemented a sentiment categorization system using a SVM (Support Vector Machine) as a machine learner. In the experiment with Korean customer reviews, the sentiment categorization system using the proposed method outperformed that using a morphological analyzer as a feature extractor.
KIPS Transactions on Software and Data Engineering
/
v.8
no.3
/
pp.109-114
/
2019
The similarity detecting method that is basically used in most plagiarism detecting systems is to use the frequency of shared words based on morphological analysis. However, this method has limitations on detecting accurate degree of similarity, especially when similar words concerning the same topics are used, sentences are partially separately excerpted, or postpositions and endings of words are similar. In order to overcome this problem, we have designed and implemented a plagiarism detecting system that provides more reliable similarity information by measuring sentence similarity and syntactic word similarity in addition to the conventional word similarity. We have carried out a comparison of on our system with a conventional system using only word similarity. The comparative experiment has shown that our system can detect plagiarized document that the conventional system can detect or cannot.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.179-183
/
2017
단어 벡터는 단어 사이의 관계를 벡터 연산으로 가능하게 할 뿐 아니라, 상위의 신경망 프로그램의 사전학습 데이터로 많이 활용되고 있다. 한국어 어절은 생산적인 조사나 어미 때문에 효율적인 단어 벡터 생성이 어려워 대개 실질형태소만을 사용하여 한국어 단어 벡터를 생성한다. 본 논문에서는 실질형태소와 형식형태소를 모두 사용하되, 형식형태소를 적절하게 분류하여 단어 벡터의 성능을 높이는 방법을 제안한다. 자체 구축한 단어 관계 테스트 집합으로 추출 성능을 평가해 본 결과, 제안한 방법으로 형식형태소를 사용할 경우, 성능이 향상되었다.
Annual Conference on Human and Language Technology
/
1995.10a
/
pp.282-289
/
1995
이 연구는 지금까지 국어 형태론에서 사용되지 않았던, 코퍼스를 이용한 계량적인 방법으로 파생어의 생산성 정도를 측정하고, 그 결과로 국어 파생 형태론에서의 생산성을 기술한 것이다. 각각의 접사들의 생산성 정도에 대한 수치를 제시함으로써 좀 더 정확하게 상대적인 생산성 비교를 할 수 있도록 하였다. 접사의 생산성 정도 측정방법은 Baayen(1989)에서 제시한 것으로, 특정접사를 가지고 코퍼스에 단 한번 출현하는 단어의 수($n_1$)와, 주어진 접사를 가지고 코퍼스에 나오는 단어의 총수(N)의 비율로 접사의 생산성 정도를 측정한다($P=n_1/N$). 200만 어절 및 1000만 어절 코퍼스를 기반으로 국어의 대표적인 파생접미사들 중 명사파생 접미사 '-이', '-음', '-기', 형용사파생 접미사 '-스럽-', '-롭-', '답-', 동사파생 접미사 '-거리-', '-대-', '-이-'의 생산성 정도를 측정하였다. 본 연구에서 채택한 코퍼스를 이용한 언어 연구 방법은 기존의 사전을 이용하여 파생어의 생산성을 측정하는 것에 비해 앞선 것이라 할 수 있다.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.327-331
/
1997
본 논문에서는 기계번역과 의미분석의 전단계로서의 구문분석에 대하여 논한다. 의존 문법에 기반을 둔 구문분석의 효율성을 위하여 한국어 어절에 대한 새로운 해석을 시도하며, 이를 기반으로 한국어 의존관계 파서의 새로운 기본 단위(SynN: Syntactic Node)를 제시한다. 또한 새로운 기본 단위를 구문분석 과정에 적용하는 방법과 그 결과를 보인다. 마지막으로, 구현된 구문분석기를 중간언어 방식 시스템인 한-중 기계번역 시스템에 채용하여 그 성능을 검증한다.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.81-85
/
2003
이 논문의 목적은 코퍼스 크기에 따른 타입과 토큰간의 관계를 엄밀한 통계적 방법으로 그 특징을 밝히고자 하는 것이다. 지금까지 코퍼스를 구축하는 데 있어서, 자료의 다양성을 고려한 자료 균형성을 문제와 더불어 코퍼스 구축 규모의 문제는 매우 중요한 고려사항이었다. 이런 문제는 일찍이 영어 코퍼스를 중심으로 많은 연구가 진행된 바가 있지만 한국어를 대상으로 한 엄밀한 연구는 많이 이루어지지 않았다. 이 연구에서는 현재까지 구축한 현대 한국어 말뭉치 1억여 어절을 대상으로 말뭉치 크기 증가에 따른 타입과 토큰간의 통계적 관계를 3가지 모형에 대해 비교하였으며 최종적으로 ARIMA모형을 이용하여 그 함수적 관계를 밝혀보았다. 연구 결과에 따르면 한국어 자료는 약 1천만 어절의 토큰을 기준으로 타입의 변화가 다소 둔화되는 결과를 보인다. 연구에 의해 도출된 함수식을 이용하면 소규모의 자료를 이용하더라도, 대규모 자료에서의 타입수를 계산해 낼 수 있으므로, 더욱 다양하고 정확한 통계처리의 근거를 제시할 수 있게 된다.
Annual Conference on Human and Language Technology
/
1989.10a
/
pp.240-246
/
1989
자동색인이라 함은 기존의 수작업에 의한 색인어 선정 대신 컴퓨터에 의해서 자동화하는 것을 말한다. 한국어는 색인어가 될 수 있는 어근에 조사 및 어미가 붙어서 한 어절을 이루는 언어학 적인 특성을 갖고 있다. 지금까지는 어근을 분리하기 위해 어근에 대한 사전을 구축하고 이를 Top-down 방법에 의해 처리하는 것이 통례였다. 그러나 이러한 방법은 외래어나 고유명사 등 새로 발생하는 어휘가 많은, 뉴스 원고와 같은 보도자료에는 쉽게 적용할 수가 없으며, 자연어를 다루는 타 분야에서도 미등록어에 대한 처리 방안이 시급한 실정이다. 본 논문은 어휘사전 없이 조사 및 어미의 생성 규칙을 이용한 Bottom-up 방식으로 처리하여 후보 색인어를 추론하고, 어절 상호간의 관계를 밝히는 구문분석을 통하여 이를 확정하는 알고리즘을 제안하였다.
인터넷과 컴퓨터를 이용한 학생들의 과제물을 평가하는데 있어 표절의 용이성으로 인해 정확히 판별하는 것은 매우 어렵고 번거로운 일이다. 특히 동일한 주제에 대해서 작성되는 경우가 많으므로 독자적으로 작성된 문서와 표절되어진 문서를 판별하기가 쉽지 않다. 이것은 클러스터링 하고자 하는 문서들에서 주요 단어들 즉, 색인어들의 출현 빈도를 추출한 뒤 이를 이용하여 가장 적합한 Clustering을 찾는 기존의 정보 검색 방법들과는 전혀 다른 문제이다. 본 논문에서는 과제물의 평가에 지침을 제공할 수 있도록 유사 어절 트리를 이용한 표절 유사도에 따른 Cluster들을 생성하는 방법에 대해 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.